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Abstract—The central line dressing change is a life-critical
procedure performed by nurses to provide patients with rapid
infusion of fluids, such as blood and medications. Due to their
complexity and the heavy workloads nurses face, dressing changes
are prone to preventable errors that can result in central line-
associated bloodstream infections (CLABSIs), leading to serious
health complications or, in the worst cases, patient death. In the
post-COVID-19 era, CLABSI rates have increased, partly due to
the heightened nursing workload caused by shortages of both
registered nurses and nurse educators. To address this challenge,
healthcare facilities are seeking innovative nurse training solutions
to complement expert nurse educators.

In response, we present the design, development and evaluation
of a robotic tutoring system, ASTRID: the Automated Sterile
Technique Review and Instruction Device. ASTRID, which is the
outcome of a two-year participatory design process, is designed
to aid in the training of nursing skills essential for CLABSI
prevention. First, we describe insights gained from interviews
with nurse educators and nurses, which revealed the gaps of
current training methods and requirements for new training tools.
Based on these findings, we outline the development of our robotic
tutor, which interacts with nursing students, providing real-time
interventions and summary feedback to support skill acquisition.
Finally, we present evaluations of the system’s performance and
perceived usefulness, conducted in a simulated clinical setting with
nurse participants. These evaluations demonstrate the potential
of our robotic tutor in nursing education. Our work highlights
the importance of participatory design for robotics systems, and
motivates new avenues for foundational research in robotics.

Index Terms—Robotics in Healthcare, Human-Centered
Robotics, Intelligent Tutors, Participatory Design

I. INTRODUCTION

As the largest sector of healthcare, nurses play a critical
role in delivering high-quality patient care and maintaining the
stability of the entire healthcare system. However, this stability
is now at risk due to a significant global shortage of nursing
professionals [90, 115, 54]. Among other challenges to patient
health outcomes, this shortage is placing an increased burden
on nursing educators to train a new generation of professionals,
while hospitals are tasked with recruiting and onboarding a
substantial number of new nurses each year.

Beyond formal education in nursing schools, hospitals
allocate substantial resources to train new nurses in hospital-
specific practices [66]. With the increasing complexity of

Fig. 1. Artificial rendering of the training environment and ASTRID, which
is composed of the Stretch robot, a depth camera, and a computer screen.

patient care, nursing staff must be regularly upskilled. For
example, the Houston Methodist hospital system trains over a
thousand nurses each year. This process includes instruction
from nursing educators, followed by skill refinement under
the supervision of an experienced nurse mentor. Sustaining
the traditional nurse-to-nurse training model is increasingly
challenging [47, 101, 63].

As a result, healthcare facilities are actively exploring
innovative solutions to enhance and support nursing edu-
cation [107, 37, 38, 1, 42, 113]. We posit that robotic tutors
can help address this urgent need for nursing education.
Specifically, robotic tutors can allow nursing students to
practice critical skills when expert nurses are unavailable, com-
plementing nurse-to-nurse training. Examining this hypothesis,
we present ASTRID: a robotic tutor for nursing education.

ASTRID is designed to help nurses acquire necessary skills
to reduce the chances of healthcare-associated infections [62].
Healthcare-associated infections, which refer to infections that
occur while the patient is receiving care, can lead to serious
complications including death [130, 140, 26, 48]. The rates of
these infections have exacerbated post-COVID-19, in part due
to the nursing shortage. These infections, however, are largely
preventable through meticulous care, adherence to protocols,
and regular training — currently delivered through a nurse-to-



Fig. 2. Nurses practicing dressing change procedures with ASTRID in a training environment (also referred to as simulation lab in the clinical community).
ASTRID offers (left) real-time guidance, (middle) physical interventions, and (right) post-practice feedback to help nurses master “principles of sterile
technique” for preventing healthcare-associated infections.

nurse model [84, 25, 96]. ASTRID aims to complement this
training by enabling nursing students, nursing residents, and
early-career nurses (collectively referred to as nursing students
in this paper) to practice and improve their skills, even without
the presence of an expert nurse.

We, a cross-disciplinary team of roboticists and nursing
professionals, designed ASTRID through a two-year partici-
patory design process. First, through exploratory brainstorm
sessions and requirement capture (Sec. III), we identified system
requirements including necessary perception, manipulation,
interaction, and tutoring capabilities. Guided by these require-
ments, we engaged in iterative prototype development (Sec. IV).
As depicted in Fig. 1, ASTRID is realized using the Stretch
mobile manipulator [69], an off-board depth camera [65], and
a computer. Using its perception, ASTRID monitors students as
they practice dressing changes on simulated patients (Fig. 2-
left), providing real-time feedback when actions that could lead
to infections are detected. Using its mobile manipulation, the
robot simulates scenarios (Fig. 2-middle) that are associated
with increased likelihood of human errors, such as interruptions.
After each training session, ASTRID provides a summary report
via the computer monitor (Fig. 2-right), enabling students to
review their performance and identify areas for improvement.
These features aim to complement the training provided by
expert nurses, who may not always be available.

We evaluated ASTRID in a human-subject feasibility study
with nine nurses (Sec. V). Results demonstrate that ASTRID
can detect student errors almost as accurately as a nursing
instructor, indicating its potential as an effective tutor. Ad-
ditionally, subjective questionnaires reveal that participants
find the system useful. Finally, the evaluations suggest several
promising directions for both foundational research in robotics
and their practical applications in nursing education.

II. RELATED WORK

We review relevant literature on nursing, robotic tutors, and
participatory design that informs our research. Figs. 3 and 4
summarizes the prior work in the area of robots in nursing and
robotic tutoring systems, and illustrates the unique contribution
of our work.
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Fig. 3. Prior work in robotics for nursing focuses on providing nurses with
assistance in decision making and physical tasks in nursing care. In contrast,
this paper focuses on robotic assistance in nursing education.

A. Robotics for Nursing

In response to nursing shortages and growing workloads,
“robotics for nursing” has become a vibrant research area [72,
20, 5, 67, 6]. Most of this work has focused on robots that assist
nurses in homes and hospitals, with little work on robotics for
nursing education.

1) Nursing Care: Robotic assistants, including commer-
cially available products, are being developed to support nurses
[50, 121, 124]. Pilot studies have shown success in using
robots for tasks such as fetching supplies and disinfecting
rooms [83, 4, 133]. As illustrated in Figure 3, existing systems
provide a mix of cognitive and physical assistance, primarily
focusing on nursing care. In contrast, our work centers on
nursing education. While our focus differs, our approach is
informed by robots designed for nursing care.

2) Nursing Education: Nursing research highlights the
growing need for technology in nursing education [63, 107,
37, 38], with its role evolving rapidly since the COVID-19
pandemic. This shift has seen increased use of videos [43, 8,
35, 41] and simulations [32, 125, 136]. Closer to our focus,
humanoid robot-patients [38] and telepresence robots are being
explored to make nursing education more accessible [1].
However, to our knowledge, the potential of robotic tutors in
nursing remains untapped and ASTRID is the first-of-its-kind
robotic tutor for nursing.
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Fig. 4. Prior work on robotic tutors primarily focuses on cognitive skill
training. In contrast, we explore the role of robotic tutors in physical skill
training, integrating both cognitive and physical interventions to enhance
physical skill execution.

B. Robotic Tutors
Intelligent tutoring systems have been developed for various

learning environments, including K-12 education, corporate
training, and medicine [103, 104, 94, 74, 59, 2, 3]. More
recently, robotic tutors have emerged that offer additional
benefits such as enhanced student interaction, improved learning
outcomes, and increased trust and engagement [81, 15, 98, 10,
30, 9, 11, 44, 102, 82], by leveraging their physical presence
and interaction capabilities.These systems allow students to
practice and learn even when teachers are unavailable, aiming
to enhance personalization and accessibility of instruction.
Most robotic tutors, as illustrated in Figure 4, rely primarily
on conversational instructions and lack mobile manipulation
capabilities. Research in human-robot interaction (HRI) has
looked using a physical intervention to improve human
learners’ cognitive skills such as problem solving [120] and
knowledge in circuit design [110]. In contrast, our work uses
a robot’s perception and mobile manipulation capabilities to
assess and enhance students’ physical skill execution.

C. Participatory Design
Participatory design is a collaborative process that involves

users in the process of designing a new service or technology.
It combines the knowledge of the users with the skills of
system designers, ensuring the inclusion of user needs in
the design process [56, 21]. A participatory design process
usually starts with reciprocal learning in which users and
designers learn about each others’ roles: designers learn about
work practices from users and users learn about technical
constraints from designers [28]. While many participatory
design methods exist [116, 93], the most widely used methods
include: participatory design workshops, collaborative focus
groups, prototyping, visits to other institutions, and usability
testing [70, 91]. Participatory design has found success in
design of robots, including those designed for healthcare and
tutoring [16, 78, 122, 132]. Informed by these works, we utilize
a combination of participatory design methods to capture
nurses’ needs, develop prototypes collaboratively with nurses,
and evaluate our prototype through a human-subject study.

III. REQUIREMENT CAPTURE

To design the robotic tutor, we adopted a three-step partici-
patory design process: requirement capture, prototype design,
and feasibility study. This section focuses on the first step,
aimed at first identifying which nursing skills would benefit
most from robotic tutors and then determining the design
requirements for the robotic tutor. We achieve these aims
through an exploratory phase, which are followed by focused
interviews with stakeholders.

A. Exploratory Phase
We believe robotic tutors have the potential to assist in a

variety of nursing education settings. To identify the most
suitable setting for the first such tutor, our cross-disciplinary
team began with internal brainstorming sessions. These sessions
were also crucial for aligning the team. Roboticists attended
nurse training sessions to learn about clinical practices and
build rapport with nursing professionals—an essential step
for this interdisciplinary effort. Two early tutor prototypes
were developed, which helped refine the research questions
and assess feasibility. Through this exploration, the central
line dressing change (CLDC) emerged as a key focus due to
it being a frequently-performed procedure, need for periodic
training due to occurence of preventable human errors, and
potential for robotic assistance.

CLDC is a crucial step in maintaining the sterility and
preventing infection of a central venous catheter or central
line, a medical device used to deliver fluids, medications, or
nutrition directly into a large vein. Maintenance of the central
line is complex and life-critical, protecting patient against
infections [51, 58]. One devastating complication during CLDC
is the central line-associated bloodstream infection (CLABSI),
which accounts for 17% of the almost one million healthcare-
associated infections per year [48]. Fortunately, CLABSIs are
preventable with meticulous nursing care and adherence to
established protocols [84, 25, 96]. These safety protocols,
referred to as the “principles of sterile technique,” outline
essential rules for maintaining sterility during dressing changes.
In this paper, we focus on nursing skills corresponding to four
key rules which are illustrated in Fig. 5.

B. Focused Interviews
Having identified a suitable nursing setting, we turned to

defining the design requirements for the robotic tutor. We
conducted focused interviews with three stakeholder groups:
nursing students, experienced nurses, and nurse educators.
Further details about the participant recruitment methodology
are provided in the Appendix.

1) Methodology: The interview protocol was approved
by Rice University IRB and structured in three parts, each
addressing a specific goal. The first part focused on un-
derstanding participants’ experiences with CLDC and the
challenges they face in adhering to the sterile technique. The
second part explored current training methods, asking if the
challenges identified were addressed and what participants
liked or disliked about existing methods. The third part
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Fig. 5. Four prohibited behaviors during a sterile procedure, such as the central line dressing change. Once a sterile field is established (the area shown in
blue), nurses need to maintain sterility by avoiding potential contamination. In particular, a nurse must keep hands above their waistline and the sterile field
within vision at all times. Hands, with sterile gloves on, must not touch anything non-sterile such as the 1-inch border of the sterile field.

brainstormed potential solutions, starting with open-ended
discussions about new training aids and then focusing on
robotic tutors. Participants were shown a video of an early
prototype of the tutoring system and asked for feedback on its
usefulness and improvements. This prototype included human
pose estimation (via MediaPipe) and provided visual alerts as
on-screen text. The Appendix includes the list of interview
questions and a link to the video of the prototype.

2) Participants: Ten participants were interviewed, includ-
ing three nursing students, three bedside nurses, and four nurse
educators. Participants’ ages ranged from 20 to 49 years. The
experienced nurses and nurse educators had between 6 and 16
years of experience as nurses, with an average of 11.3 years.

3) Results: The focused interviews led to three findings
• All participants rated CLDC to be highly important;

nursing students found maintaining the sterile field chal-
lenging. When asked to rate how challenging CLDC was
in their experience, four out the ten participants, including
all nursing student participants, rated the procedure as
challenging (> 4 on a scale of 1 → 7); three rated it
as neutral (= 4); and three rated it as not challenging
(< 4). However, all participants pointed out that CLDC
could become extremely complex when compounded with
accompanying real-world factors such as disruptions and
interruptions resulting from unexpected movements from
the patients, other patients calling the nurse, or family
members asking questions during the procedure.

• Current training methods do not emphasize real-world
factors. Nursing students first learn about CLDC and ster-
ile technique in nursing school. However, they typically do
not receive hands-on practice until they come to hospitals
for internships, usually in their final year of undergraduate
study. During the classroom learning (nursing schools,
orientations, and training sessions), instructors focus on
the basics of CLDC (i.e., the step-by-step procedure), and
do not emphasize the accompanying real-world factors
that introduce complexity to CLDC.

• New training aids, with specific features, can assist in
acquisiting of nursing skills. We asked the participants to
brainstorm new training aids that could help nurses learn
and practice the skills required for CLDC. Fig. 6 summa-
rizes the features brainstormed by the participants, labeled
with the number of groups (out of 3) that mentioned
the feature. All groups supported a system that monitors
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Skill Checklist

Imperfect Scenarios

Simulation of Patient’s Reaction

Step-by-step Refresher

List of Supplies Needed for the Procedure

1 2 30
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Log Sheet of Errors

Fig. 6. Features suggested by the participants for new training aids.

nurses and provides feedback on medical errors. However,
preferences for warnings and feedback varied. For real-
time feedback, participants debated audio vs. visual alerts
and ultimately agreed on both to accommodate different
preferences. They emphasized clear, specific explanations
of errors over generic beeping sounds to avoid alarm
fatigue. For post-practice feedback, students preferred
a log sheet with timestamps and nurse actions, while
educators suggested a checklist tracking rule violations.
Participants also recommended training aids that simulate
real-world disruptions and interruptions. Students and
bedside nurses further proposed different training levels
based on experience. Lastly, participants had no specific
preferences regarding the robotic tutor’s appearance.

C. System Requirements

Based on the findings of the exploratory phase and focused
interviews, we distilled six key requirements (Rx) for a system
that assists in CLABSI-prevention training. It needs to:

R1. detect compliance with the sterile technique;
R2. provide task-time guidance to facilitate skill acquisition;
R3. provide summary feedback for efficient training review;
R4. simulate scenarios that increase the risk of violations;
R5. be perceived as useful by nursing students; and
R6. be perceived as engaging by nursing students.
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Fig. 7. Overview of ASTRID’s system architecture for providing real-time guidance regarding the sterile technique to nursing students.

IV. PROTOTYPE DESIGN

Guided by the system requirements, we design ASTRID:
the Automated Sterile Technique Review and Instruction
Device shown in Fig. 2. It is intended for use in training
environments. In this section, we detail its key features and
their implementation.

A. System Overview

We begin by translating stakeholder requirements into the
core capabilities the robotic tutor must possess:

• To detect nurses’ compliance with sterile technique (R1):
the robotic tutor requires cameras and computer vision
algorithms to track nurses, perceive the environment,
and assess compliance in real time. The perception and
reasoning modules must operate with low latency to
provide immediate feedback.

• To provide guidance during and after the task (R2, R3):
the robot must generate nursing-specific feedback and
communicate it effectively through audiovisual channels.
The guidance must be both accurate and engaging to meet
R5 and R6, respectively.

• To simulate risk-inducing scenarios (R4): The system
needs conversational and mobile manipulation capabilities
to generate both verbal and physical interventions, such
as interruptions and distractions.

These capabilities necessitate a robot with vision-based per-
ception, mobile manipulation, and verbal interaction. Hence, to
realize ASTRID, we build upon the Stretch mobile manipulator
due to its human-safe design, onboard camera, and established
use in healthcare robotics [69]. During requirement capture,
a prototype demonstration using Stretch received positive
feedback on nurses’ comfort with the platform. To realize
remaining capabilities, we augmented Stretch with additional
hardware (an off-board depth camera [65] and a computer) and
software modules for perception, reasoning, and interaction.
Through the architecture in Fig. 7, ASTRID monitors nursing
students as they practice central line dressing change, provides
real-time feedback on sterile technique compliance, simulates
error-prone scenarios, and generates a summary report for
performance review.

B. Detecting Student Compliance with the Sterile Technique

Illustrated in Fig. 5, ASTRID considers four key principles of
sterile technique once the sterile field is established. As nursing
students practice the CLDC procedure, ASTRID monitors them
and detects compliance with these principles as detailed next.

1) Sterile Field Detection: Each training session begins with
ASTRID detecting the sterile field, which corresponds to the
sterile drape, visible as the blue area on the table in Fig. 2. The
drape is often uneven, irregularly shaped, and contains supplies
inside pouches, making detection complex. To ensure robust
detection, ASTRID utilizes a manual calibration method.1 In
particular, before training begins, the user is shown a real-time
image of the training setup on a monitor and marks the four
corners of the sterile drape using a mouse. This process takes
less than 10 seconds to complete. Our geometry-based software,
developed in-house using OpenCV2 [23] and MediaPipe [87],
then uses the pixel positions and corresponding depth values
to identify the edges of the sterile field and construct a 3D
model of it. Since the sterile field remains static during the
procedure, calibration is required only once. In our evaluations
(Sec. V), the experiment proctor performs this calibration.

2) Student Pose Estimation: During a training session,
ASTRID monitors the nursing student using its camera to
estimate their pose. The pose estimation module is built using
MediaPipe [87]. In particular, pose estimation is achieved using
a series of pre-trained models, where the first stage detects
human bodies in an RGB frame, and the second stage locates
key landmarks on the hands and body. The hand estimation
model identifies 21 landmarks, while the pose estimation model
tracks 33, with the most relevant for our application being the
shoulders, elbows, wrists, and hips. After the pose estimation
locates the key landmarks, it returns the pixel coordinates of the
landmarks. We then create a 3D environment reconstruction
by projecting the landmarks back to the 3D space. This is
to integrate the sterile field information with human pose
estimation to enable compliance detection, described next.
One unique challenge of our use case is that the nurse wears
face masks, hairnets, and gloves, which obscure parts of the
body, and often stands behind tables, limiting visibility and
making pose estimation challenging. To tackle this, we set the
visibility (a hyperparameter of MediaPipe) of these landmarks
to 0 to enhance robustness of this automated pose estimation.

3) Sterile Technique Compliance Detection: Next, ASTRID
uses the sensed landmarks of the student’s pose and the sterile
drape to determine compliance with the four principles of sterile
technique. This compliance detection is achieved through a
geometric rule-based module. The rule-based module partitions
the 3D space into sterile and non-sterile regions, it calculates

1We also explored methods that do not require manual calibration. However,
we found that they were reliable only when the drape was flat and free
of items. Future work could explore improving automated detection of the
sterile drape via interactive machine learning.



two key planes based on the sterile drape: the bottom plane,
fitted along the drape, and the front plane, defined perpendicular
to the bottom plane at the front-most edge (relative to the
student). Finally, it applies the following geometry-based rules
to check for four non-compliant behaviors:

• hands below waistline: if wrist-landmarks are below the
sterile drape (i.e., the bottom plane).

• reaching across the sterile field: if any human landmark
is ahead of the the sterile drape (i.e., the front plane).

• turning back to the sterile field: if the vector from the
left to right shoulder faces away from the sterile drape.

• touching the one-inch border: if the fingertip-landmarks
are within one-inch of the boundary of the sterile drape.

C. Providing Feedback to Students
Along with detecting sterile technique compliance, ASTRID

offers feedback both during and after the training session.
1) Task-Time Feedback: Guided by the focused interviews,

ASTRID uses both visual and audio channels to provide task-
time feedback. As shown in Fig. 2-middle, during the training
session, the nursing student can see their pose on the computer
screen with real-time skeletal tracking. Fig. 2-left provides a
snapshot of this screen. If ASTRID detects a non-compliant
behavior, it alerts the nurse both visually with red text on
the screen and aurally via pre-recorded audio. The visual
and audio alerts have the same message, “Warning: <specific
non-compliant behavior> (e.g., hands below waistline).”

2) Post-Practice Feedback: At the end of the training
session, ASTRID provides the nursing student with tools to
quickly review their practice using its screen (Fig. 2-right).
First, each session is recorded with skeletal tracking, date,
time, and warnings, allowing the nurse to see what they did
right or wrong. Second, if the nurse prefers not to review
the entire recording, ASTRID saves key frames when non-
compliant behaviors are detected. Lastly, ASTRID generates
a PDF report summarizing how many times each rule was
broken, along with the screenshots of non-compliant behavior
and associated warnings.

D. Simulating Challenging Nursing Scenarios
Guided by the findings of focused interviews, we design

ASTRID to offer three levels of training – novice, intermediate,
and advanced – which increase in complexity, simulating
challenging real-world scenarios that nurses may encounter
during dressing change procedures. A video demo of these
scenarios is available at http://tiny.cc/rss-2025-astrid.

1) Novice: At this level, nurses practice the central line
dressing change without distractions or interruptions, with all
feedback features enabled. It is ideal for nursing students and
nurses unfamiliar with the procedure.

2) Intermediate: This level additionally introduces distrac-
tions, simulating real-world scenarios where nurses may be
interrupted by patients, family members, or other medical staff.
Distractions are created by the robot, which moves around the
environment, says pre-scripted greetings, and provides positive
feedback “You are doing great! Keep going!" to the nurse.

Fig. 8. ASTRID leverages mobile manipulation to create simulations of
real-life scenarios.

The robot’s paths are pre-designed giving considerations of
nurse’s safety and proxemics. During the feasibility study, the
robot moves autonomously. The motion is programmed using
stretch_body, a python API for Stretch.

3) Advanced: In the advanced level, ASTRID uses its mobile
manipulation capability to simulate critical scenarios that
require the nurse to apply their experience and judgment
to determine the appropriate course of action. Currently, our
prototype offers two such scenarios which were co-designed
with nursing experts:

• (Scenario #1) ASTRID alerts the nurse, “Your patient’s
blood sugar is dropping below 54 mg/dL (milligrams
per deciliter). I am bringing glucose.” and brings a 50%
dextrose (glucose) injection near the bedside tables (Fig. 8-
top). Once the robot has reached the table, it alerts the
nurse, “please take the glucose and give it to the patient.”
three times. If and when the nurse takes the dextrose
injection, they reach across the sterile field, breaking the
sterile field. This represents a life-critical scenario where
the patient’s blood sugar is dangerously low and could
continue dropping, requiring the nurse to act quickly.

• (Scenario #2) ASTRID approaches the table and knocks
over the patient’s water bottle off the table, and alerts,
“Oops, the patient water bottle fell on the floor, please
pick up the water bottle and put it back.” This scenario
represents a non-emergency but common interruptions,
e.g., where a patient drops something and asks the nurse
to pick it up (Fig. 8-bottom). In such cases, experienced
nurses would typically inform the patient that they will
retrieve the item after the procedure.

http://tiny.cc/rss-2025-astrid


The choice of these physical interventions was informed
by challenges described by stakeholders during the focused
interviews, direct observations on hospital floors, and discus-
sions with nursing educators. These scenarios were refined to
ensure they aligned with professional nursing practices, met
our design goals, and were technically feasible to implement on
a robot, resulting in the specific interventions described above.
In both scenarios, the nurse must carefully reason through
their actions. Following the robot’s suggestion may lead to
a violation of sterile technique, but in some cases (e.g., the
first scenario) it may be necessary to prioritize patient health.
Similar to the implementation in the Intermediate level, all
robot’s verbal and physical interactions are pre-programmed
using the software package stretch_body, enabling the robot
to behave autonomously during training sessions.

V. FEASIBILITY STUDY

We conducted a feasibility study to evaluate ASTRID.2 This
IRB-approved study involved nine participants – seven recent
graduates or nurses with two years or less of experience and two
experienced nurses from the requirement capture interviews.
The experiment was held in the training environment shown
in Fig. 2, an artificial rendering of which is depicted in Fig. 1.

A. Materials
The experiment site was set up to mimic CLDC scenarios,

with the same level of fidelity typically used in nursing
education. The setup included a simulated patient, ASTRID, a
table for performing the dressing change, medical supplies,
and a GoPro camera. The depth camera and monitor were
placed on a table in front of the nurse. The GoPro was used
to record the experiments and was not part of ASTRID. One
of the authors served as the experiment proctor.

B. Procedure
The experiment consisted of three parts: an introduction,

dressing change procedures, and a post-experiment review.
1) Introduction: The session began with a greeting, followed

by an explanation of the study’s purpose, procedure, participant
rights, and potential risks and benefits. Participants provided
informed consent and completed a demographic survey on-site.

2) Central Line Dressing Change Procedures: Participants
were asked to perform CLDC on the simulated patient four
times (referred to as tests), each with a different setup and
purpose.

• Test 0 (Pre-test) involved participants performing a CLDC
without warnings or interventions from ASTRID. This
allowed them to familiarize themselves with the setup
and enabled necessary calibration.

• Test 1 implemented the intermediate level of ASTRID.
Participants received real-time audio-visual warnings, in
cases when ASTRID detected non-compliant behaviors.
Additionally, to simulate real-life distractions, the robot
moved around the room and said pre-scripted statements.

2We refer the reader to the supplementary material for video snippets and
resources to support the reproducibility of this study.

• Test 2 implemented the advanced level of ASTRID. The
participants continued to receive real-time warnings.
Additionally, they had to respond to the two interruption
scenarios described in Sec. IV-D3.

• Test 3 implemented the novice level of ASTRID and
involved the proctor instructing participants to deliberately
perform non-compliant behaviors (e.g., dropping hands
below the waistline). This test was included to evaluate
ASTRID’s detection capability, in case non-compliant
behaviors were not observed in earlier tests.

After each test, the participants reviewed the summary report
generated by ASTRID. The summary consists of the video
recording of the test, snapshots of each detected non-compliant
behavior, and a PDF report with a summary of how many
times the participant broke each of the four rules along with
the images of the mistakes.

3) Post-Experiment Review: After the participant completed
all four tests, they were asked to complete a post-experiment
survey administered on an on-site computer. Upon completing
the survey, the experiment proctor conducted a brief interview
to better understand the participant’s experience and solicit
suggestions for ASTRID’s future iterations and usage.

C. Measures
The feasibility study assessed whether ASTRID met the

design requirements (R1–R6) using a combination of objective
and subjective measures. The post-experiment review also
gathered participatory design feedback for future robotic tutors.

1) Measures for R1: To evaluate ASTRID’s ability to detect
student compliance with sterile technique, we compared its
performance to that of a nurse educator. A nurse educator with
20+ years of experience reviewed and annotated the video
recordings of the training sessions to establish the ground
truth for non-compliant behaviors. Annotations were made
using the Behavioral Observation Research Interactive Software
(BORIS) [49], with the experiment proctor assisting in data
entry. For analysis, we sampled the training sessions at 1Hz,
treating each second as an instance for evaluation. Each instance
was categorized as true positive (TP), false positive (FP), true
negative (TN), or false negative (FN), based on ASTRID’s
detection compared to the expert annotations. For example,
an instance was marked as FP if ASTRID detected a violation
but the expert did not. Fig. 9 provides additional examples.

2) Measures for R2–R4: To evaluate R2–R4, the post-
experiment survey included seven statements evaluating the
usefulness of ASTRID’s seven features (Fig. 10). Participants
rated each feature on a 5-point discrete visual analog scale
(DVAS), from not useful at all (1) to extremely useful (5).

3) Measures for R5–R6: The post-experiment survey
included two established surveys, adapted for the experimental
context, to assess the ASTRID’s perceived usefulness [39]
and user engagement [95]. The list of survey questions is
provided in the appendix. The perceived usefulness survey
included statements such as “Practicing with [technology]
would enhance my overall job performance.” Participants rated
these statements on a 5-point discrete visual analog scale,



Fig. 9. Examples of ASTRID’s compliance detection from the feasibility study: (True Positive) ASTRID correctly detects the nurse turning their back to the
sterile field; (False Positive) ASTRID mistakenly identifies the hands as below the waistline due to occlusion; (False Negative) ASTRID misses the left hand
below the waistline as it is hidden behind the back; and (Outlier) the table’s higher height makes it challenging to detect the sterile field and compliance.

TABLE I
PERFORMANCE: STERILE TECHNIQUE COMPLIANCE DETECTION

Metrics Results Calculation

Accuracy 98.6% (TP+TN) / (TP+TN+FP+FN)
Precision 95.5% TP / (TP+FP)
Recall 83.5% TP / (TP+FN)
F1 Score 0.89 2↑Recall↑Precision / (Recall+Precision)

ranging from extremely unlikely (1) to extremely likely (5).
The user engagement survey included statements such as “My
experience was rewarding.” This scale also utilized a 5-point
discrete visual analog scale: strongly disagree (1) to strongly
agree (5).

D. Findings

Nine nurses participated in the feasibility study. Data from
one participant (P2) was excluded as an outlier due to issues
with the table height. Although we had opted for a height-
adjustable table to accommodate participants of different height,
the highest-level of the table was still below the participant’s
waistline. Of the remaining eight participants, each performed
four tests, yielding 32 total tests. Two tests were not recorded
properly due to data storage limitations. Additionally, two
tests (pre-test and Test #1 of P6) were excluded because we
noticed when the table was at its highest level, it was at the
same level of the camera, making perception difficult. Though
this was resolved when they performed Test #2 and Test #3.
In total, we collected data from 28 effective tests, amounting
to 5, 719 seconds (95.3 minutes) of video recordings.

Finding 1: ASTRID demonstrates the potential to accurately
detect student’s compliance with the sterile technique. Among
the 5719 instances of data, 343 are found to be TP, 16 FP, 5376
TN, and 68 FN. This corresponds to an accuracy of 98.6%
and an F1 score of 0.89. An F1 score above 0.9 is considered
excellent, and an F1 score between 0.8 and 0.9 is considered
good. Table I summarizes key metrics, demonstrating ASTRID’s
high accuracy in detecting both positives and negatives. While
true positives are crucial for robotic tutoring, we wish to
highlight that true negatives are equally important. They
validate ASTRID’s perception modules and (as indicated in
the open-ended feedback) nursing students felt encouraged
when they knew they did not make any mistakes. Together
these results indicate that ASTRID satisfies requirement R1.

Finding 2: Participants perceive ASTRID as highly useful for
nursing education. Through the perceived usefulness survey,
detailed in the appendix, participants reported a mean score
of M = 4.70 (out of a maximum of 5) and SD = 0.41 on
the system’s perceived usefulness. This result highlights the
potential of ASTRID as a helpful tutoring system to improve
nurses’ skills and job performance in the future. Fig. 10
provides a granular view of ASTRID’s perceived usefulness,
highlighting participants’ feedback on its individual features.
While some features were rated more useful than others, both
real-time and post-practice feedback were consistently rated
as extremely useful.

Finding 3: Participants perceive ASTRID as engaging
and supportive. Through the user engagement survey, also
detailed in the appendix, participants reported a mean score
M = 4.84 (out of 5) and SD = 0.30, indicating that the
participants found ASTRID engaging and supportive. In the
post-experiment interview, we asked participants whether
practicing with ASTRID would improve nursing students’
confidence in complying with the sterile technique. All
participants unanimously answered “yes.” One participant,
who recently graduated from nursing school said

I always feel very anxious because I am new to the
job. But practicing with the robot has already made
me feel better about my skills because now I know I
did not make any mistakes... I also like the real-life
scenarios. We did not see those in nursing school.

In addition to helping nursing students improve and gain
confidence in their skills, participants noted that ASTRID could
offer other benefits, such as being more readily available
than experienced nurses, providing objective assessments and
feedback, and allowing nurses to practice their skills without
fear of judgment. These results and comments are especially
encouraging, as they align with the requirements identified
through initial interviews and validate our participatory design
efforts to create a nurse-friendly robotic tutor.

E. Limitations
While our work involved a rigorous co-design process,

iterative development, and human-subject evaluations, it also
has limitations. Here, we acknowledge these to contextualize
our contributions, highlight the challenges of systems research,
and guide future work. First, while we engaged stakeholders
from the outset, our evaluations were limited to nine nurses.
This sample size aligns with user-centered design research,



Snapshots 8

Summary 7

Real-time Audio Warning 7

Real-life Scenarios 6

Video Recording 6

Real-time Visual Warning 5

Skeleton Visualization 4

Count

Fig. 10. Perceived usefulness of ASTRID’s individual features: the number
of participants (out of 8) that rated a feature to be extremely useful. While
all features are perceived as useful, snapshots of contamination occurrences
receive the highest ranking and skeleton visualization the lowest.

which suggests that 8–10 participants can uncover up to 80% of
usability issues [79], including in healthcare technologies [75].
However, the small cohort can limit generalizability and our
results should be considered proof-of-concept. A key challenge
was recruiting novice nurses, whose demanding schedules made
research participation difficult. Second, our user evaluations
relied on established scales for perceived usefulness and user
engagement, but we adapted them to the specific context of
nursing education. These modifications were not separately
validated. Lastly, while the robot operated autonomously,
its functionality was constrained to the controlled training
environment. For instance, the system was tested against a
specific background. In real-world settings, the robot will need
to adapt to a wider range of environments and users, requiring
enhanced autonomy. As discussed in the next section, this
underscores the need for foundational robotics research driven
by real-world applications in nursing.

VI. CONCLUSION

We conclude by discussing the implications of our findings
for both nursing education and foundational robotics research.

A. Implications for Nursing Education

1) Key Contributions: Our work introduces a novel tech-
nological aid for nursing education: robotic tutors. Through
participatory design, we developed ASTRID, a robotic tutor
for CLABSI-prevention training. ASTRID monitors student
compliance with the sterile technique, providing real-time
feedback and tools for performance review and improvement. It
also offers multiple training levels and can simulate challenging
scenarios which may be overlooked in nursing schools. In
a feasibility study with 9 nurses, ASTRID reliably detected
compliance with four key sterile technique principles and was
perceived as useful and engaging. These results suggest that
ASTRID can help provide new nurses with opportunities to
practice their skills and receive immediate feedback, especially
as current nursing shortages challenge the sustainability of
the traditional nurse-to-nurse training model [47, 101, 63].
Further, our approach reaffirms the importance of involving
nurses early on during the design and development of new
technology.

2) Directions for Future Work: While ASTRID shows
promise, we emphasize that it is a proof-of-concept system.
We list suggest future directions for nursing research:

• ASTRID addresses four principles of the sterile technique;
however, this technique is more comprehensive [84, 25,
96]. The system also focuses on a specific part of the
dressing change procedure – after the nurse has already
opened the dressing change kit and set up the sterile field.
Early steps like opening the sterile packet and putting on
gloves are not covered and should be addressed in future
work. Participants also suggested expanding the tutor to
other tasks like Foley catheter insertion [18], and high-
sterility environments like operating rooms (OR) [118,
112, 106, 128].

• While ASTRID reliably detects sterile technique violations,
it is not immune to errors. A risk is students becoming
overconfident due to false negatives. While technological
improvements can enhance detection accuracy, we believe
integrating input from nursing instructors is crucial to
address this challenge. Participants also emphasized the
importance of human instruction, especially for those
who began their education during COVID-19. Thus,
ASTRID should complement broader nursing education
frameworks rather than function as a standalone tool.
It is important to highlight that ASTRID is designed
to augment traditional nursing training and intended for
use alongside instructors. Future work should evaluate
ASTRID through formal A/B comparison against a control
condition where nurses practiced without robotic support.
Additionally, our current work focused on student-robot
interactions, with instructor input limited to its design and
evaluation. Future work should explore the instructor-
student-robot triad to understand how robots can best
support existing teaching methods.

B. Implications for Robotics
1) Key Contributions: Within robotics, our work makes

three key contributions:
• Introducing nursing education as a new robotics domain:

We identify nursing education as a field in need of
transformative solutions and demonstrate the potential of
robotics in this space through the design, development,
and evaluation of ASTRID. Our work serves as an initial
testbed for evaluating robotics technologies in nursing
education and reveals new research directions in task
and motion planning, perception-aware motion planning,
conversational robots, and robotic tutors.

• Advancing robotic tutoring with a focus on physical
skills: Unlike most robotic tutors, which focus on cog-
nitive learning through conversational interactions (e.g.,
math tutoring), ASTRID is designed for physical skill
acquisition. This shift necessitates perception-driven
performance evaluation and physical interventions via
mobile manipulation. We see this as a small but important
step toward expanding robotic tutoring beyond screen-
based or purely conversational approaches.



• Reaffirming the value of participatory design in robotics:
Our work reinforces the importance of participatory design
in developing robotics systems. By actively involving
stakeholders throughout the process, we ensure that the
technology is aligned with real-world needs, further
supporting user-centered approaches in robotics research.

2) Directions for Future Work: Our systems-driven inves-
tigation also reveals directions for foundational research in
robotics, which have implications beyond nursing:
• Rule-Based Detection and Alternatives: The rule-based

perception pipeline of ASTRID offers simplicity and relia-
bility (advantages that are valuable in early-stage research)
but limits generalizability. Future work should focus on
enhancing detection using more robust pose estimation,
object detection, and action recognition techniques. In
ongoing work, we are evaluating alternatives to MediaPipe
for improved pose estimation, and plan to integrate object
detection models (e.g., YOLO [105], SSD [85]) and action
recognition models (e.g., I3D [29] and SlowFast [46]) to
enhance generalizability.

• Perception-aware Robot Planning: During evaluations,
ASTRID struggled with taller participants, partly due to the
use of a static off-board camera. Raising the camera reduces
visibility of the lower body, while lowering it obstructs
key areas like the far side of the sterile field. Future work
should consider development of more robust perception
systems for detecting nursing activities, by leveraging
advances in vision [34, 52, 119, 60, 127, 89] and mobile
perception [45, 64, 137, 126]. Although there is a vast
literature on perception-aware motion generation and active
perception, we have identified additional constraints that
prevent the seamless application of existing methods, such
as the generation of robot motion for object manipulation
that maximizes the nurse monitoring, especially for high
degree-of-freedom robots. These constraints also extend to
task planning and motivate the need for novel methods for
perception-aware task and motion planning.

• Multimodal Human-(Robotic Tutor) Interaction: Several
nurses attempted to converse with ASTRID when it greeted
them or issued verbal warnings, but ASTRID relies on
pre-scripted language and lacks the ability for free-form,
turn-taking conversations. Adding such features could
enhance the tutoring. However, if generative or large
language models are used, their limitations must be care-
fully considered [17, 97, 138, 22, 71, 129]. Combining
multiple intervention types also offers exciting potential;
our work takes a step in this direction by incorporating
physical interventions, though limited to pre-defined tasks.
Tighter integration of perception, mobile manipulation,
and conversation could significantly enhance future robotic
tutors across domains.

• Calibrating Trust in Robotic Tutors: As robotic tutors
become more capable, trust calibration is a critical concern
to prevent students from over-relying on these systems [40,
134, 135, 80, 73, 53]. This is especially important for
robotic tutors, as their teaching role may lead students to

inherent trust them more than robotic assistants or peers [19,
24, 114, 36, 86, 111]. One way to address this is by
explaining the robot’s capabilities and limitations to students
and involving instructors in the process [57, 12, 76, 13,
14, 31, 77, 55, 61, 117, 123, 131, 99, 27, 108, 109, 92,
100]. Indeed, our participatory design findings suggest that
allowing educators to customize robotic tutors through
end-user programming will be essential for their real-world
effectiveness [33, 7, 139, 88, 68].

We conclude by emphasizing the need for cross-disciplinary
collaboration in use-inspired robotics systems research. Our
research reaffirms that developing robotics systems requires
inputs from domain experts, use of participatory design
methods, and expertise from robot developers. This integrated
approach is key to developing safe and responsible human-
centered robotics.

VII. ETHICAL IMPACT STATEMENT

This work presents ASTRID, a robotic tutor designed to
support nursing education and reduce preventable infections
through improved training. Developed through a participatory
design process with nursing professionals, ASTRID aims to
complement human instruction. While it offers real-time and
post-practice feedback, we caution against overreliance due to
potential perception errors. All user studies were conducted
under IRB approval, with informed consent and attention to data
privacy. Broader deployment should ensure equitable access,
human instructor’s oversight, and mechanisms to calibrate user
trust in the robotic tutor.

VIII. SUMMARY OF SUPPLEMENTARY MATERIAL

Please see the Appendix for further details on:
• Methodology for recruiting participants;
• Questions used during the focused interviews;
• Statements used during the feasibility study to measure

ASTRID’s perceived usefulness; and
• Statements used during the feasibility study to measure

user engagement during the experiment.
Additionally, a video demonstration of ASTRID is available

at http://tiny.cc/rss-2025-astrid.
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APPENDIX

a) Recruitment Methodology: We recruited participants
for the Focused Interviews and Feasibility Study by sending
recruitment materials to hospitals and institutions in the area.
The recruitment materials were approved by Rice University
IRB (IRB-FY2023-1 and IRB-FY2024-431). Participants came
to Rice University for the study where we had set up a simulated
training environment similar to one used in a hospital. Each
session lasted 45→ 60 minutes. Participants were compensated
with a $25 Amazon gift card and a parking validation.

b) Tables: The next page of this appendix provides the
following supplementary materials:

• Table I provides the list of questions used during the
focused interviews.

• Table II provides the statements used during the feasibility
study to measure ASTRID’s perceived usefulness. These
statements are adapted from [1]. This table reports the
average score and standard deviation for each statement
across participants and the overall score.

• Table III provides the statements used during the fea-
sibility study to measure user engagement during the
experiment. These statements are adapted from [2]. This
table reports the average score and standard deviation for
each statement across participants and the overall score.

c) Supplementary Video: Additionally, a video demon-
stration of ASTRID is available at http://tiny.cc/rss-2025-astrid.
The video showcases ASTRID’s physical interventions and
human pose estimation during a practice session with a nurse
participant.
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TABLE I
INTERVIEW QUESTIONS USED IN THE FOCUSED INTERVIEWS

Section 1: Central Line Dressing Change

A. Are you familiar with the central line dressing change procedure?
B. Rate level of agreement: Maintaining the sterile field during CLDC is important (1 = completely disagree to 7 = completely agree).
C. Describe your approach to maintaining the sterile field.
D. Rate your level of agreement: Maintaining the sterile field during CLDC is challenging.
E. Describe any challenges in maintaining the sterile field.
F. Describe any factors that increase the occurrence of sterile field contamination.

Section 2: Current Training Methods

A. How were you trained to perform the dressing change procedure and maintain the sterile field?
B. Were the factors that increase the occurrence of sterile field contamination emphasized in the training? If yes, please elaborate.
C. Did you use any technology during these training? If yes, please elaborate.
D. Which methods have you used to perfect the skills required for maintaining the sterile field?
E. What do you like about these methods?
F. What are some limitations of these methods?

Section 3A: Brainstorming New Training Aids

A. Which features would you like to see in new training aids that can help nurses learn or perfect the skills required for maintaining the sterile field?
B. How and when would nurse trainees and nurses use this aid?
C. How will this aid improve nurses’ ability to learn or perfect the skills required for maintaining the sterile field?
D. Could there by any side-effects of using this aid? If so, please elaborate?
E. Which features should not be present in this aid?

Section 3B: Feedback on a New Training Aid Prototype

Prompt: We have designed and prototyped a novel training aid and would like to solicit your inputs regarding this prototype.
Video demo of the prototype: http://tiny.cc/rss-2025-astrid-prelim.

A. What do you like about this prototype?
B. Do you think such an aid can improve nurses’ ability to learn or perfect the skills required for maintaining the sterile field?
C. How and when would nurse trainees and nurses use this aid?
D. What do you not like about this prototype?
E. Could there be any side-effects of using such an aid? If so, please elaborate?
F. Which features would you like to be added to this prototype?
G. Which feature would you like to be removed from this prototype?
H. How should the aid notify when a sterile field contamination occurs (audio alert, visual alert, verbally explain the reason for contamination, ...)?
I. How should the aid look? J. Provide your inputs on the limitations of the system.

TABLE II
PERCEIVED USEFULNESS MEASURES (ON A 5-POINT DVAS SCALE)

Mean SD

1. Practicing with ASTRID would help me acquire the sterile techniques more quickly. 4.75 0.46
2. Practicing with ASTRID would improve my job performance during the central line dressing change procedure. 4.63 0.52
3. Practicing with ASTRID would improve my overall job performance. 4.38 0.52
4. Practicing with ASTRID would enhance my effectiveness on the job. 4.50 0.53
5. Practicing with ASTRID would enhance patient safety by reducing chances of healthcare-associated infections. 4.88 0.35
6. I would find ASTRID useful in nursing education. 5.00 0.00
7. I would find ASTRID useful in helping me prepare for quarterly and annual nursing evaluation. 4.75 0.46

Overall 4.70 0.41

TABLE III
USER ENGAGEMENT MEASURES (ON A 5-POINT DVAS SCALE)

Mean SD

1. My experience was rewarding. 4.75 0.46
2. I would recommend this system to my colleagues. 4.63 0.52
3. I would recommend this system to nursing students. 4.88 0.35
4. I was really drawn into this experience. 4.75 0.46
5. I felt involved in this experience. 5.00 0.00
6. This experience was fun. 5.00 0.00

Overall 4.84 0.30
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