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Abstract 
We propose a novel, vision-based method for robot homing, the problem of computing a 

route so that a robot can return to its initial “home” position after the execution of an arbitrary 

“prior” path.  The method assumes that the robot tracks visual features in panoramic views of 

the environment that it acquires as it moves.  By exploiting only angular information 

regarding the tracked features, a local control strategy moves the robot between two positions, 

provided that there are at least three features that can be matched in the panoramas acquired at 

these positions. The strategy is successful when certain geometric constraints on the 

configuration of the two positions relative to the features are fulfilled.  In order to achieve 

long-range homing, the features’ trajectories are organized in a visual memory during the 

execution of the “prior” path.  When homing is initiated, the robot selects Milestone Positions 

(MPs) on the “prior” path by exploiting information in its visual memory.  The MP selection 

process aims at picking positions that guarantee the success of the local control strategy 

between two consecutive MPs.  The sequence of successive MPs successfully guides the 

robot even if the visual context in the “home” position is radically different from the visual 

context at the position where homing was initiated. Experimental results from a prototype 

implementation of the method demonstrate that homing can be achieved with high accuracy, 

independent of the distance traveled by the robot. The contribution of this work is that it 

shows how a complex navigational task such as homing can be accomplished efficiently, 

robustly and in real-time by exploiting primitive visual cues. Such cues carry implicit 

information regarding the 3D structure of the environment. Thus, the computation of explicit 

range information and the existence of a geometric map are not required.  

Keywords: Robot homing, omni-directional vision, panoramic cameras, vision-based robot 

navigation.  
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1. Introduction 
The goal of this research is to propose a minimalist, yet robust, vision-based method that 

supports robot homing and to describe a real time implementation of this method on a robotic 

platform. Homing is a term that robotics has borrowed from biology [20, 43], where it is 

usually used to describe the ability of various living organisms to return to their nest after 

having distanced themselves to forage. Homing is also a useful behavior for mobile robots. It 

is assumed that a mobile robot starts moving at a position in its workspace, which we will call 

the “home” position and executes an arbitrary path, called the “prior” path. The execution of 

the prior path may have been the result of a different behavior such as workspace exploration 

or target following. Then, the problem is to develop a means of enabling the robot to find its 

way back to the home position. Homing accuracy can be crucial, particularly when a 

subsequent task depends on the accurate positioning of the robot. For example, docking for 

battery recharging may require homing with high (i.e. in the order of a centimeter) positional 

accuracy. One of the objectives of this work is to reach this level of homing accuracy in order 

to provide support for such tasks.  

 
1.1. Related work on robot homing 
Robot homing is an instance of the general robot navigation problem. There have been many 

efforts towards solving navigational tasks using non-visual sensors. Mobile robots are 

typically equipped with odometry sensors which, in principle, suffice to support homing. 

However, the errors in the information provided by odometry sensors are considerable and, 

most importantly, cumulative. Recent research efforts use odometry only as a coarse 

indication of the robot's pose and employ range (ultrasound or laser) sensors to create or use a 

metric representation of the environment (e.g. occupancy-grid maps) [37, 38, 40]. Several of 

these methods have been proven successful in the context of demanding applications in 

complex environments [5, 42]. However, indoor environments often exhibit similar 3D 

structure at completely different locations, which results in high uncertainty in the estimation 

of the robots’ pose. Therefore, a lot of research effort has been devoted to dealing with 

uncertainty in robot localization [6, 18, 26, 19, 39]. 

 On the other hand, visual sensors provide dense information regarding “where is 

what”. A survey of methods for vision-based robot navigation is presented in [15]. When 

visual sensors are used, topological workspace representations are usually constructed [11, 
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33]. An interesting approach for homing [3] is based on recovering the epipolar geometry 

relating two images. The applicability of this approach is limited by the difficulty in 

establishing feature correspondences between distant viewpoints. In order to solve the 

correspondence problem between distant views, several efforts exploit algorithms that are 

invariant to affine transformations, such as the Fourier-Mellin transform [32]. Methods that 

combine range and visual information have also been proposed [17, 2]. 

 
 

Figure 1: An example of a panoramic image. 
 

 The aforementioned methods have been applied to visual input provided by 

conventional cameras with limited field of view. Panoramic cameras, however, can provide 

up to a 360o field of view (see Figure 1). For navigational tasks a wide field of view is 

essential since a robot can observe most of its surroundings without the need for elaborate 

gaze control. Furthermore, the likelihood of detecting reference features and the “life-cycle” 

of a tracked feature are increased, while changes due to dynamic aspects of the environment 

can be tolerated [9]. Chahl et al [10] have used panoramic cameras for egomotion estimation, 

range computation and localization. Kröse et al [27] have studied the problem of robot 

localization while Bianco et al [4] have investigated possible landmark definitions that allow 

for robot navigation. Winters et al [44, 45] have used omni-directional cameras to achieve 

robot navigation by constructing a topological representation of the environment and by 

applying visual path following.  

 The choice of vision as the primary source of sensory information for achieving a 

homing behavior is also inspired by nature, which provides a plethora of visual systems that 

are successful in assisting long-range navigation and homing. Insects such as ants and bees 

exhibit remarkable homing abilities based on a minimalist cognitive architecture that 

associates motion vectors to visual content, without 3D reconstruction of the environment 
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[16]. One of the first algorithmic models for homing was developed to explain the 

navigational capabilities of ants and bees. Collett et al [12, 13] and Srinivasan et al [35] have 

studied insect navigation and they proposed various ways in which insects use familiar 

landmarks on their trip to the home position. Cartwright and Collett [7, 8] have proposed the 

so-called snapshot model. According to this model, a snapshot is taken at the home position. 

When the agent is displaced to a different position both the perceived angles and the 

landmarks sizes on the retina change. As a result, the snapshots acquired at these two 

positions vary significantly in appearance. Pairing sectors of the current and home snapshots 

using compass information can derive a home vector, pointing approximately to the direction 

of the home position. Each pairing generates two unit vectors, (a) a tangential vector pointing 

from the snapshot sector towards the current view sector and (b) a radial vector, which points 

centrifugally, if the apparent size of the current view sector is smaller than the size of its 

counterpart in the snapshot and vice versa. Summing all unit vectors derives the homing 

vector. This approach requires the use of compass information and is successful in driving the 

robot to the goal only if the starting position is in the vicinity of the goal. 

 Many other research efforts towards solving the problem of vision-based homing in 

robotics have been inspired by the snapshot model. For example, Lambrinos et al [28] 

introduced the proportional vector model and implemented it on the Sahabot II. The 

experiments were conducted on a flat plane in the Sahara desert with four black cylinders as 

highly distinctive landmarks. The snapshots were aligned at a direction obtained from the 

polarized light compass of Sahabot. Möller [31] describes the average landmark vector 

technique and its implementation on analog hardware, which is closely related to the snapshot 

model. Franz et al [21, 22, 23] proposed the average displacement vector model that is based 

on the assumption that landmarks are equidistant from the current viewpoint. According to 

this model, the equal distance assumption is not supposed to drastically affect the 

convergence properties of their control algorithm. Franz et al [24] provide an excellent review 

of bio-mimetic robot navigation. Most of these approaches use compass information that 

facilitates the task of corresponding landmarks in panoramas acquired from different 

viewpoints. 

Another way of achieving homing is by “memorizing” the environment. This is the 

approach taken by appearance-based methods. Cameras are nicely suited for such approaches, 

since images are usually stored to represent a location and control is associated with each 

stored image. The images taken during homing are matched with images acquired and stored 
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during the execution of the prior path. Gaussier et al [25] developed a neural network 

approach to map perception to action. The robot computes an array of maximum intensity 

averages along the horizontal axis. The set of maximum values in the array defines a “place”, 

which a neural network associates with a control that eventually moves the robot to its final 

destination. Matsumoto et al [30] introduced the VSRR (“view-sequence”) concept, where the 

robot stores a sequence of images and associated controls. Then the system computes the 

displacement in pixels between the current image and the best-matched stored image. This 

displacement is used in a table to extract controls. 

 

1.2. The proposed approach to homing 
We assume a robot equipped with a panoramic camera mounted on it. The basic building 

block of the proposed homing strategy is a local, reactive control strategy, which enables a 

robot to move between two adjacent positions. The success of the control strategy depends on 

the existence of at least three matched image features between the two panoramas acquired at 

these two positions. The features employed in our approach are image corners, which can be 

automatically extracted and localized in images [34]. Usually, a plethora of such features can 

be extracted in images acquired in realistic environments as opposed to other more complex 

landmarks [36]. Establishing feature correspondences in images acquired from adjacent 

viewpoints is an extensively studied problem in computer vision. This problem can be 

simplified by tracking the image features in all intermediate frames that the robot acquires 

between two nearby positions during the execution of the prior path. Therefore, short-range 

homing, i.e. homing initiated at a position close to home, can be achieved by direct 

application of the local control strategy. In the case of long-range homing prominent features 

are greatly displaced and/or occluded, and the correspondence problem becomes much more 

difficult to solve. In many interesting cases the visual context at the home and the current 

positions are totally different (e.g. two positions in different rooms) which makes the 

establishment of correspondences an impossible task, simply because such correspondences 

do not exist. Therefore, the local control strategy cannot support long-range homing. To 

overcome this problem, the proposed method decomposes homing into a series of simpler 

navigational tasks, each of which can be implemented using the proposed local control 

strategy.   

 The operation of the overall homing strategy is depicted in Figure 2. As the robot 

departs from its home position H it acquires panoramic views of the environment from which 
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it extracts characteristic features and tracks them in subsequent frames. In our implementation 

we are employing the KLT algorithm for corner tracking [34, 41]. As the robot moves, some 

of the features disappear while new ones appear due to the changing viewpoint, possible 

changes in lighting conditions, occlusions, etc. The system builds a visual memory that 

records the “life-cycle” of all detected and tracked features. If at a certain moment in time the 

robot is at location G and decides to return back to its home position H, it automatically 

defines a number of Milestone Positions (MPs) on the original path connecting H and G, as 

well as the set of features that will be used to drive the robot between consecutive MPs. The 

basic aim of this selection process is to guarantee that (a) the robot can move between 

successive MPs based on the properties of the local control strategy and (b) that visiting all 

successive MPs will lead the robot to its home position H. 

 
 
Figure 2: An illustration of long range-homing. The robot starts at position H and executes a 

“prior” path that leads it to some position G. Then, homing is initiated at G, aiming at 

guiding the robot back to its home position H. 
  
 The work presented in this paper exploits panoramic vision and is also influenced by 

the studies on insect navigation by Cartwright and Collett [7, 8]. Compared to the existing 

approaches to robot homing, the proposed method has a number of attractive properties. The 

proposed method enables a robot to solve the homing problem regardless of the length of the 

prior path and with minimal computational and sensory requirements.  In particular, the main 

contribution of this work is that it shows that robust, long-range homing capabilities can be 

achieved by a vision-based approach which uses a simple control strategy and does not make 

use of a geometric map, of range or of compass information. The local control strategy does 

not require the definition of two types of motion vectors (tangential and centrifugal), as in the 

original snapshot model and, therefore, the definition of motion vectors is simplified. 

Furthermore, there is a simple and intuitive stopping criterion that marks the reaching of the 

home position. The reactive nature of the employed local control strategy enables a robot to 

perform other important navigational tasks while homing.  For example, the robot motion 
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vector suggested by the local control strategy can always be combined with the motion vector 

suggested by a reactive obstacle avoidance module. Last but not least, we provide a complete 

architecture and an implementation for long-range homing. We show how short-range 

homing strategies can be incorporated in a global framework even in the case that no feature 

is commonly visible at the home position and the position where homing was initiated.  

 The proposed method for robot homing has been implemented and extensively tested 

on a robotic platform in a real indoor office environment. The home position is achieved with 

high accuracy after long journeys during which the robot performs complex maneuvers. No 

modification of the environment is necessary to facilitate the robot in its homing task. The 

proposed method can efficiently achieve homing as long as enough corners exist in the 

environment. Due to the simplicity of the tracked features, however, it is guaranteed that there 

are many of them in a typical indoor environment.  

 
1.3. Overview 
The rest of this paper is organized as follows. In Section 2 we present the local control law 

that is able to move the robot between two adjacent positions. We also provide an analysis of 

the control strategy demonstrating that the set of positions that are reachable from a specific 

starting point depends on the spatial configuration of the employed features. In Section 3 the 

construction and the employment of the visual memory for long-range homing are described. 

Section 4 presents important issues regarding the detection and tracking of image features in 

panoramic images while Section 5 summarizes the results from several experiments. Finally, 

in Section 6, various aspects of the proposed method are discussed and basic conclusions of 

this research are drawn. 

 

2. Local control strategy 
We now present the proposed local control strategy that drives a robot between two adjacent 

positions S and T1, provided that there is an established correspondence between at least three 

features in the panoramic views acquired at these positions.  These positions will later be used 

as milestone positions (MPs) for long-range homing. 

 

                                                           
1 H is the initial position of the prior path, the home, and G the position where homing is initiated. S and T are 
any two positions along the path and they correspond to the starting and target positions for the local control law. 
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2.1. Method description 
Let Fi represent a feature in the environment. We define AP(Fi) to be the bearing angle of 

feature Fi as observed from position P, i.e. the direction at which the robot perceives the 

feature relative to its orientation.  A pair of features F1 and F2, as observed from position S, 

define an angle F S(F1, F2) = AS(F2) – AS(F1) measured in the range [0..2 )π . The locus of 

positions that can observe the features F1 and F2 at angle F S(F1, F2) is the circular arc with 

end-points F1 and F2 that passes through S (see the corresponding solid circular arc in Figure 

3).  

 

 
Figure 3: If at position S the robot follows the bisector of the angle formed by two features 

F1 and F2 in the environment, it will effectively move on the branch of the hyperbola that 

passes through S and has points F1 and F2 as its foci. 

 

 A robot motion vector M12 is defined so that it lies on the bisector of the angle ∠F1SF2 

and its magnitude is proportional to the angle difference |F T(F1, F2)- F S(F1, F2)|. The direction 

of M12 can easily be computed as AS(F1) + F S(F1, F2)/2. Intuitively, the partial motion vector 

M12 contributes towards equalizing the corresponding angles at positions S and T. Therefore, 

the larger the angular difference is, the strongest the component of motion towards this 

direction will be. The direction of motion is determined by the relative size of the angles; if 

the angle at T is larger (smaller) than the corresponding angle in S, then the robot moves on 

the bisector of the angle, towards (opposite to) T. The path that the robot will follow is the 

branch of the hyperbola that passes through S and has the features F1 and F2 as its foci. The 

robot will stop moving when it reaches a position which belongs to the circular arc F1TF2, 
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since for all points T′ on this arc: |F T′(F1, F2)-F T(F1, F2)|=0. Each of the branches of the 

hyperbola with F1 and F2 as foci, intersect all circles passing through F1 and F2; consequently 

it is guaranteed that the robot will both arrive at a point with this property and will stop there. 

 It is clear that, given only the bearing angles of two features F1 and F2, the robot 

cannot move from a given point S to a target position T. However, if another feature F3 is 

considered, then T is constrained to lie on two more circles, namely the one defined by 

features F1, F3 and position T and the one defined by features F2, F3 and position T. Let us 

now assume that for each pair of features Fi and Fj ( 3,1 ≤≤ ji , ji ≠ ), we define motion 

vectors Mij as before and force the robot to move in the direction of the vector sum M of all 

partial motion vectors Mij. Figure 4(a) illustrates the quantities involved in the proposed 

control strategy. Figure 4(b) gives an example of the behavior achieved by a simulated robot 

utilizing the proposed control strategy. Note that the trace of the robot towards the goal 

position is not a straight line. This indicates that at each position, the global motion vector M 

is not necessarily directed towards the target position T. Still, for the case of Fig. 4(b), as the 

robot adjusts its motion vector M at every new position, it converges to the goal position. 

Whether the target position has been reached can easily be verified by checking whether the 

magnitude of the motion vector M is zero. Practically, this is achieved by comparing the 

magnitude of M against a predefined, positive threshold that represents the desired tolerance 

in homing accuracy. 

  

(a) (b) 

Figure 4: Graphical sketch of the control strategy. (a) The three vectors M12, M23 and M31 

are partial contributions to the global motion vector M defined at position S. (b) The black 

trace corresponds to the path traveled by a simulated robot between the start position S and 

the target position T. Numbered rectangles correspond to the three features employed by the 

local control strategy. 
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2.2. Properties of the local strategy  
Given the definition of the motion vector M, two questions need to be answered in order for 

M to constitute an appropriate control vector for moving the robot from S to T:  

(a) Assuming that the robot’s trajectory passes through T, will the robot stop there?  

 Assuming perfect sensing, T is the only location on the plane from where three given 

features can be observed with a specific set of angles. Therefore, if the robot arrives at T, it 

will stop there because this is the only location on the plane where all Mij and, therefore, M 

are equal to zero. A degenerate case arises when the target position T and the three features 

belong to the same circle. This special case is discussed later in this section. 

 (b) Given a starting position S, which is the locus of positions that are reachable by 

following the motion vector M?  

 Simulations have been carried out to demonstrate the convergence properties of this 

control strategy. To do so, the definitions of the reachable and catchment areas2 are 

introduced. 

Definition 1: Let S be a point on the plane and F1, F2 and F3 be three point features on the 

plane. The reachable area R (S, F1, F2, F3) is defined as the set of points that the robot can 

reach starting from S, by employing the bearing angles of features F1, F2 and F3 in the 

proposed control strategy. 

Definition 2: Let T be a point on the plane and F1, F2 and F3 be three features on the plane. 

The catchment area C (T, F1, F2, F3) is defined as the set of all starting positions from which 

T can be reached by employing the bearing angles of features F1, F2 and F3 in the proposed 

control strategy. 

The reachable area contains all reachable destinations of a robot initially placed on S and 

moving according to the proposed control strategy. The catchment area contains all possible 

starting points of a robot that has reached position T. Although we do not have an analytical 

proof on the shape of the reachable area, it has been experimentally validated that the set R 
(S, F1, F2, F3) consists of: 

(a) Area A1: the interior of the circle defined by features F1, F2 and F3.  

(b) Area A2: the intersections of half-planes defined by the sides of the triangle F1F2F3. 

(c) Area A3: curves that emanate from the circle defined by the three features.  

 

                                                           
2 The term “catchment area” was originally proposed by Cartwright and Collett. [7].  
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Areas A1 and A2 are always reachable, independent of the starting position S. On the other 

hand, area A3 changes shape depending on S. Figure 5(a) shows illustrative examples. 

Features F1, F2 and F3 are represented by numbered rectangles. The robot starts moving at the 

position S of a simulated workspace. The reachable area of this starting position is shown in 

gray color. White color designates areas that the robot cannot reach.  

 Several simulations have been conducted to monitor the catchment area of points 

belonging to areas A1 and A2, in order to obtain further evidence to the fact that the shape of 

these areas does not depend on the starting position. Towards this end, a goal position is set 

and the starting robot position is varied. Indeed, the catchment area of every point in areas A1 

and A2 is the entire plane, which implies that points in these areas are reachable 

independently of S.   

  
(a) (b) 

Figure 5: Investigation of reachable areas for the case of three features F1, F2 and F3. 

Reachable area appears in gray color while unreachable area appears in white color. The 

starting position is designated by the symbol S, while the observed features are numbered. 

(a) Reachable area for three features in general configuration, (b) reachable area in the case 

of almost collinear features. 

 

 A special case is encountered when the target position and all features belong to the 

same circle. In this degenerate case, all points on this circle satisfy the stopping criterion. 

Another special case is encountered when the employed features are collinear. Then, all 

points on the plane are reachable apart from the line that connects the set of collinear features. 

This is because in the case of collinear features, the circle defined by the three features 

degenerates into a half-plane. The region between the extensions of the sides of the 

degenerate triangle of features is the other half-plane. Thus, points on either side of the line 
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defined by the collinear features are reachable. Points exactly on this line are not, because 

then, the target position and the three features are degenerately co-circular. Figure 5(b) 

illustrates the case of three almost collinear features.  

 The proposed control strategy can be generalized to employ more than three features. 

Each feature pair may contribute to the global motion vector M. The shape of the reachable 

area is much more complex when more than three features are considered. However, 

simulations have shown that if a point lies within the convex hull of the features, then it is 

guaranteed to be a reachable position. Figure 6 shows the reachable area for point S when a 

configuration of five features is employed. 

 An important question is whether, by measuring bearing angles only, the robot can 

determine if a specific position T is reachable or not. To develop such a criterion, we consider 

features in a retinotopic order, as observed from position T, i.e. in an order that guarantees 

that ( ) ( )T i T ji j A F A F> ⇔ > . Note that the ordering of features depends on the target 

position T. We then consider the angles F T(Fi, Fj), 1 i n≤ ≤ , ( 1)modj i n= +  formed by 

consecutive features in the defined order. Position T is guaranteed to belong to the convex 

hull of features F1, F2,…, Fn if:  

( 1)mod{1,..., }, ( , ) .T i i ni n F F π+∀ ∈ Φ <  (1) 

Since the convex hull of the features is a subset of the reachable area, the above criterion 

guarantees that position T is reachable from any starting position. Criterion (1) is sufficient 

but not necessary, in the sense that there exist reachable positions that do not satisfy it. 

 
 

Figure 6: In the case of more than three features, the shape of the reachable area is more 

complex compared to that of three features. However, points within the convex hull of the 

features are always reachable.  
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2.3. Algorithm for the local control law  

We are now in the position to fully describe the algorithm that allows a robot to move from a 

position S to a position T, given a set of features F1, F2, …, Fn, n>2, that have been 

corresponded between views S and T, acquired at positions S and T respectively, and for 

which the bearing angles and AT(Fi) are known. Figure 7 presents this algorithm in pseudo-

code. 

 

§ Input:  

§ The angles AT(Fi) of features Fi (1 i n≤ ≤ ), observed from the target position T. 

During algorithm execution, P denotes the current position of the robot. 

§ A threshold t  for the magnitude of the motion vector M determining whether the 

target position T has been reached. 

 

§ Output: Upon termination, the robot will reach position T, if position T is 

reachable. 

 

§ Algorithm: 

1. Based on AT(Fi), decide whether position T is reachable or not, by 

employing the criterion of eq. (1). 

2. If position T is unreachable, exit. 

3. For all 1 i n≤ ≤ , set j = (i +1) mod n and compute ( , )T i jF FΦ  

4. Repeat { 

4.1   Set motion vector M =(0,0) 

4.2   For all 1 i n≤ ≤ , do:  

4.2.1   j = (i +1) mod n 

4.2.2   Compute ( , )P i jF FΦ  

4.2.3   Define partial motion vectors Mij as described is section 2.1. 

4.2.4 Add Mij  to M. 

             4.3   Update position P by moving according to motion vector M. 

} Until (|M| < t ) 

 

Figure 7: The local control strategy that can move a robot from a start position S to a goal 

position T, given that at least three features have been corresponded between S and T. 
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3. Long-range homing 
Assume that the home H and the goal position G do not have any feature in common and, 

therefore, the local control strategy presented in section 2 cannot be employed to directly 

support homing. In order to alleviate this problem, milestone positions (MPs) are introduced.  

Based on the employed feature selection algorithm, the robot detects features (corners) in the 

view acquired at its home position. As it departs from this position following the prior path, it 

continuously tracks these corners in subsequent frames. During its course, some of the 

initially selected features may be lost while other features may appear. In the first case the 

system “drops” the features from subsequent tracking. In the second case, features start being 

tracked. This way, the system builds a “visual memory” where information regarding the 

“life-cycle” of features is stored. A graphical presentation of this type of memory is shown in 

Figure 8. The vertical axis in this figure corresponds to all the features that have been 

identified and tracked during the execution of the prior path. The horizontal dimension 

corresponds to time. Horizontal black lines correspond to the life cycle of a certain feature. It 

is theoretically possible for a feature to disappear at some point in time t, and reappear later in 

the journey of the robot from home position to position G. In this case, the same 

environmental feature will appear as two distinct features in the visual memory, but this does 

not affect the homing procedure. 

 
 
Figure 8: Graphical presentation of the memory built to support homing. The task of 

homing can be decomposed into a series of simpler navigation tasks, which involve visiting 

sequentially a number of Milestone Positions (MPs) by employing the local control strategy 

of Fig. 7. 
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 As soon as homing is initiated at position G, the robot first decides how far the robot 

can go towards H based on the extracted and tracked features. A position with these 

characteristics is denoted as MP1 in Figure 8. The automatic selection of MP1 essentially 

amounts to the problem of finding the three features that are visible at G, have the longest 

tracked trajectories and their A1 reachability area contains MP1. In Figure 8 these are features 

F5, F6 and F7, which is a trivial selection since there are no other visible features (we also 

assume that position MP1 belongs to the reachability region defined by features F5, F6 and F7). 

Achieving MP1 is feasible (by definition) by employing features F5, F6 and F7 in the proposed 

local control strategy because these features can be tracked (and therefore corresponded) 

between G and MP1. The algorithm proceeds in a similar manner to define the next MP 

towards home. The procedure terminates when the last visited position coincides with the 

home position. 

The local control strategy of Section 2 does not necessarily guarantee the achievement 

of the orientation with which the robot has previously visited this position. This is because it 

takes into account the differences of the bearing angles of features and not the bearing angles 

themselves. This poses a problem in the process of switching from the features that drove the 

robot to a certain MP to the features that will drive the robot to the next MP. This problem is 

solved as follows. Assume that the robot has originally visited a position P with a certain 

orientation and that during homing it arrives at position P′, where P′ denotes the same 

position, visited under a different orientation. Suppose that the robot arrived at P′ via features 

F1, F2, …, Fk. The bearing angles of these features as observed from position P are AP(F1) 

AP(F2),…, AP(Fk) and the bearing angles of the same features as observed from P’ are AP’(F1) 

AP’(F2),…, AP’(Fk). Then, it holds that: 

AP(Fi) – AP’(Fi) = f , nii ≤≤∀ 1, , (2) 

where f  is constant and equal to the difference in the robot orientation at P and P′. This is 

because panoramic images that have been acquired at the same location but under a different 

orientation differ by a constant rotational factor f . Since both AP(Fi) and AP’(Fi) are known, f  

can be calculated. Theoretically, one feature suffices for the computation of f . Practically, for 

robustness purposes, all tracked features should contribute to the estimation of f . Errors can 

be due to feature tracking inaccuracies and/or due to the non-perfect achievement of P during 

homing. For the above reasons, f  is computed as 

f  = median{AP(Fi) – AP’(Fi)}, 1 ≤ i ≤ n (3) 
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Having an estimation of the angular shift f  between the images acquired at P and P′, the 

retinal coordinates of all features detected during the visit of P can be predicted. Feature 

selection is then applied to small windows centered at the predicted locations. This 

calculation results in registering all features acquired at P and P’ and permits the 

identification of a new MP and the continuation of the homing procedure.  

 An important decision is the selection of the number of features that should be 

corresponded between two consecutive MPs. It has been shown that three features suffice, 

although more features can be used, if available. It is quite important that only a few (three) 

matched features are required by the local control strategy; this almost guarantees that there 

will be a series of MPs that when sequentially visited, will lead the robot to its home position. 

The advantage of considering more than three corresponded features is that reaching MPs 

(and consequently reaching the home position) becomes more accurate because feature-

tracking errors are smoothed out. However, as the number of features increases, the number 

of MPs also increases because it is less probable for a large number of features to “survive” 

for a long period. In a sense, the homing scheme becomes more conservative and it is 

decomposed into a larger number of safer, shorter and more accurate reactive navigation 

sessions. Specific implementation choices and related results are discussed in the experiments 

section of the paper.  

 

4. Panoramic sensing 
In this section we deal with the details pertaining to the detection and tracking of image 

corners which constitute the perceptual features that are employed by the local control 

strategy described in section 2 and used in the construction of the visual memory in section 3. 

Image corners have several attractive properties that favor their selection as the primitive 

visual information employed by the proposed homing method. Specifically, there are many of 

them in most indoors environments. Moreover, their definition, extraction and tracking are 

mathematically rigorous and computationally efficient. Nevertheless, the homing strategy 

can, in principle, exploit any other point feature that can be extracted from panoramic images 

(e.g. centroids of detected and tracked colored image blobs). 
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4.1. Extracting and tracking features in panoramic images 
The local control strategy for moving between adjacent positions is based on the availability 

of feature correspondences between two panoramic views. If the two views have been 

acquired from significantly different viewpoints, feature correspondence is a non-trivial task 

[29]. For this reason, the proposed homing strategy achieves the required feature 

correspondences through feature tracking in a series of panoramic images that the robot 

acquires as it moves. This guarantees small inter-frame displacement, which, in turn, 

facilitates the task of feature correspondence. More specifically, we have employed the KLT 

tracking algorithm [34, 41]. KLT starts by identifying characteristic image features, which it 

then tracks in a series of images.  

 An important property of KLT is that the definition of features to be tracked 

guarantees optimal tracking. The definition of features is based on the quantity: 

2

2( , ) x x y

x y y
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Z i j

g g g

 
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, 
 

(4) 

which is defined over an NxN neighborhood of image point (i,j). In eq.(4) gx and gy are the 

partial derivatives of the image intensity function. The eigenvalues ?1 and ?2 of the matrix Z 

are computed. Good features to track are considered those satisfying the rule 

min{?1, ?2} > t, (5) 

where t is a predefined threshold. Tracking is then based on a Newton-Raphson style 

minimization procedure that minimizes the error vector e : 

[ ] ,x

y

g
e I J

g
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 

∑∑  
 

(6) 

where I and J are the two images containing the features to be tracked. The minimization of e  

is based on the solution of the linear system  

,Zd e=  (7) 

where d is the displacement of the tracked feature. In addition to the purely translational 

model, tracking can take into account the case of an affine image transformation between two 

consecutive images. Theoretically, the latter is more general and allows tracking of features 

that have undergone shearing or rotation. Shi and Tomasi [34] propose the use of the 

translation model for a good displacement measurement of features and confine the affine 

model to monitoring a feature's quality by checking the dissimilarity between the initial and 

the current frame. 
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The KLT corner detection and tracking is not applied to the panoramic images 

provided by a panoramic camera (e.g. image of Figure 1) but rather on a cylindrical version of 

it (e.g. the image of Figure 9). Such an unfolding transformation can easily be achieved using 

a polar-to-Cartesian transformation [1]. In the resulting cylindrical image, the full 360o field 

of view is mapped on the horizontal image dimension. In the remainder of this paper, if not 

otherwise stated, the term panoramic image refers to a cylindrical one. Once a corner feature 

F is detected and tracked in a sequence of such images, its bearing angle AP(F) of the feature 

can be computed as: 

( ) 2 F
P

x
A F

D
π

= , 
 

(8) 

where Fx  is the x-coordinate of feature F in the image acquired at position P, and D is the 

width of this panoramic image in pixels. 

 

 
 

Figure 9: The result of unfolding the panoramic image of Figure 1. 
 

4.2. Reducing uncertainty in feature tracking 
Feature correspondence may result in feature mismatches which may introduce considerable 

errors in the computation of the motion vector. One way to eliminate some of these errors is 

to exploit the ordering of features in panoramas acquired at two different positions. More 

specifically, features that do not appear in the same order in panoramas acquired at two 

different positions are excluded from the computation of the global motion vector. In order to 

detect such features, the Longest Common Subsequence algorithm [14], which is a dynamic 

programming technique, has been employed. Formally, given two sequences X = <x1, x2, …, 

xk> and Z = <z1, z2, …, zm>, Z is considered a subsequence of X if there exists a strictly 

increasing sequence <i1, i2, …, ik> of indices of X such that, for all j = 1, 2, …,k, xi(j) = zj. 

Given three sequences X, Y and Z, Z is a common subsequence of X and Y, if Z is a 

subsequence of both X and Y.  

 Consider now the sequence of features FS = <F1, F2, …, FL> extracted at the start 

position S and the sequence FT = <F′1, F′2, …, F′K> extracted at the goal position. The 

estimation of the motion vector M (from S to T) is based on the features contained in the 
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maximum-length common subsequence of FS and FT. The time complexity of the Longest 

Common Subsequence Algorithm is O(L+K). 

 

5. Experimental results 
The proposed method has been experimentally tested on LEFKOS, the RWI B21r mobile 

robotic platform of the Computational Vision and Robotics Laboratory of ICS-FORTH. A 

panoramic camera has been mounted on top of LEFKOS to provide the necessary panoramic 

views (see Figure 10). An 800 MHz Pentium III processor was dedicated to vision processing 

and robot control. The experimental testing took place in a real office environment. No 

special arrangements and modifications were made in the environment to facilitate the 

execution of the proposed homing method. Two series of experiments have been conducted 

aiming at testing different aspects of the proposed homing strategy. Clearly, the robustness of 

the overall homing strategy heavily depends on the robustness and the accuracy of the local 

control strategy that moves the robot between successive MPs. In order to quantitatively 

assess the robustness and accuracy of the local control strategy a series of related experiments 

have been conducted. Moreover, a series of long-range homing experiments have been 

executed. 

 

 5.1. Experiments with the local control strategy 
The first series of the conducted experiments study the ability of the proposed local 

control strategy to support robot motion between adjacent positions. In each of these 

experiments, the robot is placed at a particular home position where it initially detects N 

features. These features are subsequently tracked as the robot moves away from the home 

position, executing the prior path. The prior path is executed with the robot performing a 

purely translational motion with a speed of 15 cm/sec. The execution of the prior path is 

terminated as soon as the number of tracked features drops below a threshold of M features. 

Then, the robot employs the proposed local control strategy to return back to its home 

position. Six different combinations of values for parameters N and M were tried to 

investigate how the performance of the proposed local control strategy is influenced by 

feature selection. For each pair of parameters M and N, ten independent navigation sessions 

were executed resulting in a total of sixty navigation sessions. In all these experiments the 

home position remained the same; however the directions of the prior paths randomly varied 
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among different experiments. Table I summarizes the quantitative results obtained from these 

experiments.  

 

 
  
Figure 10: LEFKOS, the mobile robotic platform of ICS/FORTH with a panoramic camera 

mounted on it. 

 

 The first and second rows of Table I measure the average length of the prior path and 

the standard deviation of this length, respectively. It can be verified that as we relax the 

constraint on the number of features that should be successfully tracked before starting 

homing, the path traveled by the robot increases considerably. This occurs at the cost of 

decreased positional accuracy for homing (third and fourth row of Table I). It is interesting to 

observe that the effect of accuracy degradation is more profound in the case of smaller N. For 

example, for N = 50, varying the number of tracked features from 45 to 35 results in an 

average of 25 centimeters increase in the error when attempting to reach the home position. 

On the contrary, when 100 features are employed, varying the number of tracked features 

from 95 to 85 increases the positional error by approximately 2 centimeters. Analogous 

observations hold for the standard deviation of the positional error. The fifth row of Table I 

shows the average number of features that are still tracked upon arrival at the home position 

at the end of the experiment. As it can be verified, the number of features lost during homing 

is in the same order as the number of features lost during the execution of the prior path. It is 

important that in all these experiments the robot had to perform a rather complex maneuver 

including an 180o rotation. This is because the prior path is executed with a purely 

translational motion, therefore, returning to the home requires 180 degrees of change in robot 

pose. 
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Table I: Performance of the proposed local control strategy in supporting robot motion 
between adjacent positions 

 N=50, 
M=45 

N=50, 
M=40 

N=50, 
M=35 

N=100, 
M=95 

N=100, 
M=90 

N=100, 
M=85 

Mean distance traveled (m) 3.24 4.99 6.40 1.72 3.17 5.71 

St. dev. of the distance traveled (m)  0.54 1.27 0.67 0.45 0.83 1.11 

Mean homing error (cm) 3.20 8.90 28.40 15.20 16.34 17.43 

St. dev. of error (cm) 2.35 10.08 16.97 6.75 7.99 9.23 

Average number of features 
survived until reaching home 

39 35 27 84 79 72 

 

 The above series of examples show that the proposed control law can achieve a target 

position with remarkable accuracy which clearly depends on the number of features 

employed. The results also demonstrate that with corner features, many more that the 

theoretic minimum of three should be employed. This is not a problem because typically, a lot 

of corners can be detected in indoor environments. Moreover, it should be stressed that the 

optimal number of features may vary depending on various parameters such as robot speed, 

the distribution of features in the environment etc. 

The accuracy of the proposed method for robot homing is attributed to the use of 

panoramic vision. It turns out that the accuracy in reaching a certain position depends on the 

accuracy in localizing the image features but also on the spatial arrangement of features 

around the target position. To illustrate this, assume a panoramic view that captures a full 

360o view of the environment in a typical 640x480 image. The dimensions of the cylindrical 

panoramic images produced by such panoramas are 1394x163, which means that each pixel 

corresponds to 0.258o of the visual field. If a corner detector can localize a corner with an 

accuracy of 3 pixels, the accuracy of measuring a bearing angle of a feature is 0.775o or 

0.0135 radians. This implies that the accuracy in determining the angular extent of a pair of 

features is 0.027 radians, or, equivalently, that all positions in space that view pair of features 

within the above bounds cannot be distinguished.  
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(a) (b) 

Figure 11: Influence of the arrangement of features on the accuracy of reaching a desired 

position. Dark gray area represents the uncertainty in position due to the error in feature 

localization (a) for a panoramic camera and (b) for a 60o f.o.v. conventional camera. 

 

Figure 11 shows results from related simulation experiments. In Figure 11(a), a 

simulated robot, equipped with a panoramic camera, observes the features in its environment 

with the accuracy indicated above. Then the set of all positions that the robot could reach by 

the proposed control strategy are shown in the figure in dark gray color. It is evident that all 

such positions are quite close to the true robot location. Figure 11(b) shows a similar 

experiment but involves a robot that is equipped with a conventional camera with limited 

field of view that observes three features. Because of the limited field of view, features do not 

surround the robot. Due to this fact, the fuzziness in determining the true robot location has 

increased substantially. It is important to note that in the experiment of Figure 11(b) the 

camera captures 60o of the visual field in a 640x480 image. Thus, each pixel represents 0.094o 

of the visual field and the accuracy of measuring a bearing angle of a feature is 0.282o or 

0.005 radians. Thus, accuracy in determining the angular extend of a pair of features is 0.01 

radians, which is almost three times larger, compared to the accuracy of the panoramic 

camera. Thus, although feature localization is more accurate in the case of the hypothesized 

conventional camera, the uncertainty in reaching a desired position is much higher because of 

the arrangement of features in the visual field of the robot. In the proposed local control 

strategy, as shown in section 2.2, each target MP lies within the convex hull of the features 

that will be used to drive the robot towards it. Since features surround the target position, the 

accuracy in reaching it is very high. These results indicate that in the context of this work, a 
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sensor that captures a large portion of the visual field is preferable, compared to a sensor that 

captures more accurately a smaller visual field. 

 

  
(a) (b) 

Figure 12: Workspace layout for two representative homing experiments. Starting at point G, 

homing is achieved by visiting three and five MPs in experiments (a) and (b), respectively. 

The workspace dimensions are approximately 4x9 meters. 

 

5.2. Homing experiments 
Figure 12(a) gives an approximate layout of the robots’ workspace and the location of the 

robot’s start position in a representative long-range homing experiment. The robot leaves its 

home position and, after executing a predetermined set of motion commands, reaches position 

G, covering a distance of approximately eight meters. Then, homing is initiated, and a number 

of MPs are automatically defined. The robot sequentially reaches these MPs to eventually 

reach the home position. Note that the properties of the local control strategy applied to 

reaching successive MPs are such that the homing path is not identical to the prior path. 

During this experiment, the robot has been acquiring panoramic views and processing them 

on-line. Image preprocessing involved unfolding of the original panoramic images and 

gaussian smoothing (s =1.4). The resulting images were then fed to the KLT corner tracker. 

Potential features were searched in 7x7 windows over the whole image. For a feature to be 

considered as a candidate for tracking, threshold t in eq. (5) was set to 1000. Feature tracking 

has been accomplished with the aim of image pyramids and the Newton-Raphson iterative 

minimization scheme. Two pyramid levels have been used. Tracking of a feature was stopped 

when the determinant of its Z matrix (eq.(4)) dropped below 0.1. The robot’s maximum 

translational velocity was 4.0 cm/sec and its maximum rotational velocity was 3 deg/sec.  

These speed limits depend on the image acquisition and processing frame rate and are set to 

guarantee small inter-frame feature displacements which in turn, guarantee robust feature 

tracking performance. The 100 strongest features were tracked at each time. After the 
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execution of the initial path, three MPs were defined so as to guarantee that at least 80 

features would be constantly available during homing.  

   
(a) (b) (c) 

Figure 13: Snapshots from a homing experiment. The robot returns back to the home position 

after the execution of the prior path and the homing route with three MPs. These snapshots 

correspond to the experiment of Figure 12(a). 

 

 
  
Figure 14: Cylindrical panoramic view of the workspace from the home position that the 

robot is approaching in Figure 13.  The features extracted and tracked at this image frame are 

also shown as numbered rectangles. 

 

Figure 13 shows snapshots of the homing experiment as the robot reaches the home position. 

Figure 14 shows the visual input to the homing algorithm after image acquisition, unfolding 

and the application of the KLT tracker. The tracked features are superimposed on the image.  

It must be emphasized that although the homing experiment has been carried out in a single 

room, the appearance of the environment at positions H and G differs considerably. As it can 

be observed, the robot has achieved the home position with high accuracy (the robot in Figure 

13(c) covers exactly the circular mark on the ground).  

In a second experiment, a more complicated scenario was investigated. A number of 

panels were added to the workspace of Figure 12(a), dividing it into two separate rooms 

communicating through a narrow passage (see Figure 12(b)). Because of the introduction of 

the panels, the visual appearance of the two “rooms” is completely different, posing a 

challenge to feature tracking and to the process of defining the MPs. As it can be seen in 
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Figure 12(b), the robot defined five MPs in this experiment, as opposed to the three MPs of 

the first experiment. Figure 15 shows snapshots of the homing procedure. It can be verified 

that homing has been accomplished with an accuracy of a few centimeters. 

 

   
(a) (b) (c) 

Figure 15: Snapshots from the experiment in which the workspace has been separated into 

two rooms. The robot is visible (a) initially at its home position, (b) on its way back to the 

home position and (c) at the final position reached. This experiment corresponds to the 

workspace of Figure 12(b). 

 

6. Discussion 
In this paper, a novel method for robot homing has been proposed. The method is based on 

tracking image corners in panoramic views of the environment. Tracking has been employed 

as a means to correspond features in different views of the environment. By memorizing and 

processing the “life-cycle” of the tracked corners, the robot is able to define MPs that should 

be revisited sequentially to achieve homing.  

 The proposed method has a number of attractive properties. A complex behavior such 

as homing is achieved by exploiting very simple sensory information. More specifically, only 

corners are extracted and tracked in a series of images and only the evolution of their retinal 

coordinates in a panoramic view is monitored. It is quite important that robot navigation, a 

problem typically handled through the use of range information, is achieved without 

computing any explicit range information. Argyros et al [1] present similar results for a 

reactive, corridor following behavior. The decomposition of the homing journey to a number 

of intermediate reactive navigation sessions appears intuitive. Moreover, the accuracy in the 

achievement of the home position does not depend on the distance traveled by the robot, 

which constitutes a fundamental problem in odometry-based homing. The final positional 

error depends only on the last step of the whole procedure (moving from the last MP to the 

home position). 



 
 

26 

 

 This work also reveals the importance of omni-directional visual cues to robot 

navigation tasks. The proposed scheme depends on the availability of a full 360o visual field 

in a number of ways. A robot equipped with a standard camera with limited visual field 

cannot easily identify “features seen before” on the way towards home position. Thus, 

homing becomes a much more difficult task. In environments that lack rich visual content, a 

panoramic sensor has higher probability of identifying features that are suitable for supporting 

navigation. A conventional camera would have much less candidate features to select and 

track because of its limited field of view. Furthermore, as shown earlier, the accuracy in 

reaching a certain position is improved when the employed features are distributed over a 

large field of view. With respect to the proposed method, an additional advantage of a 360o 

field of view is that it simplifies the description of the conditions under which the local 

control law is successful for all possible feature configurations. 

 An important issue in vision-based homing is the selection of the visual features that 

can support navigation. In our approach to homing, the selected features were image corners. 

The advantage of corners is that typically, there are many of them in most indoors 

environments. Their definition, extraction and tracking are mathematically rigorous and 

computationally efficient. Their main disadvantage is that correspondence of corners in views 

acquired from considerably different viewpoints can only be achieved through tracking. This 

is actually the reason why the proposed approach cannot easily be extended to more complex 

navigation tasks such as “go to location X”. To support such a scenario would imply that the 

robot memorizes the lifecycle of the features in all paths connecting its current position to all 

potential target positions. To alleviate this problem an alternative would be to use, instead of 

corners, characteristic areas of the environment, such as visual landmarks. Current research 

work is towards this direction. 
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