Handbook on Randomized Computing, Kluwer Academic Publishers, p. 221-249, 2001

Chapter 1

A RANDOMIZED APPROACH TO
ROBOT PATH PLANNING
BASED ON LAZY EVALUATION

Robert Bohlin
Department of Mathematics

Chalmers University of Technology
SE-412 96 Géteborg, Sweden

Lydia E. Kavraki

Department of Computer Science

Rice University
Houston, TX 77005, USA

Abstract

Keywords:

Path planning addresses the problem of finding collision-free paths for
moving objects — robots — among obstacles. Randomized techniques
have shown great performance in high-dimensional configuration spaces
and are now the methods of choice for complex problems. In this paper
we describe the Probabilistic Roadmap Method (PRM), variations of
PRM, and other closely related algorithms. PRM is a simple and widely
used planner applicable to virtually any kind of robot. The underlying
idea is to build a roadmap in the configuration space. The nodes in the
roadmap correspond to feasible configurations selected at random, and
the edges correspond to feasible path segments. In the query phase, the
initial and goal configurations are connected to the roadmap, and then
the planner searches for a shortest path.

The contribution of this paper is a new scheme for the lazy evaluation
of the feasibility of the roadmap. We apply the scheme to PRM and
obtain a planner called Lazy PRM. The overall theme of the algorithm
is to increase speed by only exploring the part of the roadmap that
is necessary for the current query. Lazy PRM is tailored to efficiently
answer single planning queries, but can also be used for multiple queries.
Experimental results provided in this paper show that our lazy method
is very efficient in practice.

Collision avoidance, motion planning, path planning, probabilistic
roadmaps, randomized path planning, robotics.

1



2

1. INTRODUCTION AND MOTIVATION

Path planning for robots is a broad and intensively studied problem.
The general problem is to find collision-free paths for moving objects
among a set of obstacles. The moving objects are called robots and they
operate in an environment called the workspace. A robot can be a single
rigid body or a collection of rigid bodies connected by joints.

Path Planning Applications. Planners are used in a wide variety
of applications. Industrial robots weld, paint, and assemble products
and their actions could be programmed automatically to a large ex-
tent. Many Automated Guided Vehicles (AGVs) plan their paths in
real-time while they transport assembly parts between different stations
in a workshop. AGVs use sensors to navigate and to detect unknown
moving obstacles (like humans). Planners are integrated with Computer-
Aided Design (CAD) software to support the design engineer in deciding
whether or not it is possible to assemble or maintain a product.

More applications can be found in computer graphics where planners
generate motions for animated humans, vehicles and other objects [26].
The task may also involve coordination of several robots. One important
issue here is to generate motions that look natural and smooth. In
medical surgery, planners are used to generate paths for operations so
that the damage in tissues involved is minimized. Neurosurgeons, for
example, use the planner in [40] to compute how to generate radiation
beams that destroy brain tumors without damaging surrounding tissues.
Last but not least, planning has interesting applications in biomedicine.
For example, a path planner can be used to compute if a drug molecule
(the robot) can find a path into a large protein molecule, dock to its
active site, and in this way prevent an undesired reaction in the active
site [15, 28].

Need for Efficient Path Planners. There are several reasons for
using path planners in the above applications. In many industrial prob-
lems and in computer graphics animation, the main reason is to reduce
programming time. Manual calculation of paths can be very tedious.
For example, a car body may have thousands of spots to weld and there
the potential time savings from the use of a planner are huge. The qual-
ity of the produced paths is also an important issue. Often, execution
time is also critical, and planners can be used to optimize paths in that
respect.

A planner may also allow the computation of very complex motions.
An industrial example may be the coordination of fixture motion and
robot motion in an arc welding application. In computer graphics, one



A Randomized Approach to Robot Path Planning 3

may want to have a large number of virtual characters interacting, e.g.,
a crowd of tourists can be made to follow a guide. A car-like robot has
curvature constraints on the paths it can follow due to its limited turning
radius. Constraints of a different type arise when a dextrous robot grasps
and manipulates an object, or when cooperating robots simultaneously
manipulate an object. Then closed kinematic chains appear and these
must always be maintained, otherwise the object will fall down. Another
difficulty that appears in real scenarios is dealing with uncertainties.
We may have uncertainties in the control of the robot, in sensing, or
incomplete knowledge of the environment (e.g., the Pathfinder rover
that was sent to explore the surface of Mars [34]).

Our Work and Outline of the Paper. Different path planning
algorithms have been developed for addressing the issues above. We
concentrate on the most basic version of the path planning problem,
that of moving a robot in a static environment. Efficient solutions of that
problem translate to improvements in the solution of problems with more
constraints such as the ones mentioned above. The high computational
complexity of the basic path planning problem (see Section 2) dictates
the use of randomized techniques for its solution.

In the first part of this paper, we revisit some general randomized
path planning techniques for robots with many degrees of freedom (dof).
The class of algorithms we are mostly interested in are the Probabilis-
tic Roadmap Methods (PRMs). These algorithms are simple, general
and can be used for a broad range of problems. In the second part
of the paper, we present a new planner based on the PRM framework.
The planner tries to minimize the number of collision checks done in the
PRM framework and hence increase speed. We call the new planner Lazy
PRM. We demonstrate that Lazy PRM is particularly effective in stan-
dard industrial applications. The latter are high-dimensional problems
characterized by complex geometry and relatively uncluttered spaces.

This paper is organized as follows. Section 2 discusses the complexity
of the basic path planning problem, motivating the need for randomized
techniques for its solution. Section 3 establishes the terminology that will
be used in the rest of the paper. Section 4 gives a description of the basic
PRM, a number of variations of the algorithm, and other closely related
algorithms. In Section 5 we describe Lazy PRM. We draw our discussion
from [6, 7, 8]. Related ideas about lazy evaluation have been developed
concurrently and independently in [35]. An analysis of the planner is
given in Section 6 while experimental results are given in Section 7. We
conclude in Section 8 with a discussion of the capabilities and limitations



4

of Lazy PRM. Some of our comments apply to randomized approaches
to path planning in general.

2. COMPLEXITY ISSUES

In the previous section we gave some examples of path planning ap-
plications with different characteristics, and some problems that arise in
practice. Unfortunately, there is no planning technique that deals with
all of those conditions and constraints. For some special cases there exist
good planners, but in general there is still a way to go until planners can
be practically useful.

An algorithm is called complete if it always will find a solution or
determine that none exists. Complete algorithms for the basic path
planning problem exist, but they can not be used in practice due to their
high complexity. So far, the fastest complete algorithm for arbitrary
robots is given in [12] and it is exponential in the number of dof of the
robot. The algorithm is too slow to be useful in practice, and it is mostly
used in theoretical analysis as an upper bound on the complexity of the
path planning problem. Some versions of the path planning problems
have been proved PSPACE-hard [38]. Various other complexity results
are described in [15, 27].

An alternative to complete planners are probabilistically complete plan-
ners. If a collision-free path exists, a probabilistically complete planner
finds a solution with a probability approaching 1 given enough time for
the computation [15]. Trading completeness for speed, randomized tech-
niques have been successfully applied to generate path planners that are
now the methods of choice for complex planning tasks. In this paper,
we will explore in depth one such technique, the PRM framework, which
has delivered excellent experimental results in the last five years.

3. NOTATION

We need a way to describe the position of the robot in a convenient
way. For instance, if the robot is a single rigid object in a three-
dimensional workspace, it has six dof and we can specify its position
and orientation by six parameters; three coordinates for the translation,
and three angles for the orientation. Similarly, the pose of an articulated
robot arm (with a fixed base) is completely specified by the joint values.

More generally, a configuration is a set of independent parameters
such that the position of every point of the robot can be determined
relative to a fixed frame in the workspace. The set of all configurations
is called the configuration space and is denoted by C. The dimension
of C is equal to the number of dof of the robot. The obstacles in the



A Randomized Approach to Robot Path Planning 5

workspace can be mapped onto a subset of C — the configuration space
obstacles — by the following definition: a configuration belongs to the
configuration space obstacles if the robot intersects any obstacle in the
workspace. The open subset of collision-free configurations is denoted
by F.

A path for the robot is simply a continuous curve in C. We will also
refer to a path as a sequence of points in C, in which case the path is
the piecewise linear curve obtained by linearly interpolating subsequent
points.

With this notation, we can rephrase the basic path planning problem
as follows: given an initial configuration g;,;; and a goal configuration
4g0q in F, find a continuous curve in F connecting these points, or de-
termine that none exists [27]. This formulation of the problem is usually
favorable, since it is stated in terms of navigating a point rather than
objects in the workspace. In that sense, the planning problem becomes
independent of the geometry and kinematics of the robot, and may ap-
pear simpler. However, as soon as the robot is allowed to rotate or has
revolute joints, the kinematics is non-linear, and seemingly simple ob-
stacles in the workspace are mapped onto very complex obstacles in the
configuration space. If the dimension of C is low, say four or less, then it
is possible to obtain an approximate representation of the configuration
space obstacles by discretization. But if the dimension is higher there is
no convenient way to represent C.

So, how can we plan in a space where the obstacles cannot be repre-
sented? We do have an implicit representation of the obstacles. Given a
configuration it is generally easy to use the forward kinematics function
to calculate the position of the robot in the workspace. Then we can
test for intersection with the workspace obstacles to decide whether the
configuration is feasible or not. Thus, we can point-wise determine if we
are in F. As a consequence, we cannot completely verify that a path,
i.e. a curve in C, is entirely collision-free, but we consider a path being
feasible if it is collision-free to a certain resolution.

4. RANDOM ROADMAPS FOR FAST PATH
PLANNING

The idea of using randomization to solve the path planning problem
is not new. The Randomized Path Planner (RPP) [5] was one of the first
algorithms that used randomization. The algorithm was a breakthrough
that made it possible to solve difficult problems in high-dimensional
configuration spaces. At the same time, RPP possessed completeness
properties. The planner uses a potential field in the configuration space



6

and calculates the potential without an explicit representation of the
configuration space obstacles. The potential field is composed of one at-
tractive field guiding the search towards the goal, and one repulsive field
preventing from collisions with the obstacles. Starting from g,,,;;, the
algorithm follows the steepest descent direction towards q,,. However,
the potential is not perfect (calculating an ideal potential is probably
as difficult as the path planning problem in itself) and generally con-
tains local minima. To escape local minima the RPP combines descent
motions and random walks.

One of the most general and widely used methods for path planning
is the Probabilistic Roadmap Method (PRM). The algorithm is easy to
implement and has been successful in many applications, also in high-
dimensional configuration spaces. PRM is practically independent of
the geometry and the kinematics of the robot, and can be used with
virtually any kind of robot. In this section we will start with a detailed
description of a basic PRM and continue with some variations of PRM.

4.1 THE PROBABILISTIC ROADMAP
METHOD (PRM)

The idea behind the Probabilistic Roadmap Method (PRM), described
in [24, 25, 37|, is to represent and capture the connectivity of F by a
random network — a roadmap. The nodes in the roadmap correspond
to randomly selected configurations, and the edges correspond to path
segments between the nodes. In a preprocessing step, or a learning
phase, a large number of points are distributed uniformly at random in
C, and those found to be in F are retained as nodes in the roadmap.
A local planner is then used to find paths between each pair of nodes
that are sufficiently close together. If the planner succeeds in finding a
path between two nodes, they are connected by an edge in the roadmap.
In the query phase, the user specified start and goal configurations are
connected to the roadmap by the local planner. Then the roadmap is
searched for a shortest path between the given points, see Figure 1.1.

Even though a powerful local planner will require few nodes to obtain
a well connected roadmap, most implemented PRMs show that it is
computationally more efficient to distribute nodes densely and use a
relatively weak, but fast, local planner, see [25, 37]. The local planner
may for instance only check the straight line between two nodes. Other
local planners are discussed and evaluated in [1].

Often the learning phase of PRM has a node enhancement step in
order to increase the connectivity of the roadmap by adding more nodes
in difficult regions of F. Different techniques are used to identify these



A Randomized Approach to Robot Path Planning 7

Figure 1.1 A random roadmap created by basic PRM in a simple two-dimensional
configuration space with rectangular obstacles (grey). The shortest path is the thick
line.

regions; one way is to distribute new points close to a number of seeds
randomly selected among the existing nodes. In [24], the probability
that a node is selected is proportional to Flb’ where b is the number of
edges connected to the node. An alternative selection can be based on
a node’s ratio of failed attempts by the local planner to find paths to
other nodes [25]. Other techniques to increase the connectivity of the
roadmap are described in [2] and [17].

PRM has shown to work well in practice in high-dimensional config-
uration spaces, see [25]. Indeed, it is useful for multiple queries, since
once an adequate roadmap has been created, queries can be answered
very quickly.

4.2 VARIATIONS OF PRM

The idea of using randomization, and the simplicity and generality of
randomized algorithms, have inspired further development of PRM and
other closely related methods. A few algorithms similar to PRM do not
divide the planning process into a learning phase and a query phase.
Given an initial and a goal configuration, the planner in [36] inserts
randomly distributed nodes in F, one at a time, and connects them to
the different components of the roadmap by a local planner. New nodes
are inserted until the initial and goal configurations can be found in
the same connected component of the roadmap. See also [13] and [21]



8

for related algorithms. The latter paper gives an adaptive scheme for
adjusting the power of the local planner.

Although the node enhancement step was developed to increase the
connectivity of the roadmap, basic PRM still has weaknesses in find-
ing paths through narrow passages in F. Several recent approaches
are intended to improve PRM in this respect by using different sam-
pling strategies. The underlying idea is to distribute nodes close to the
boundary of F. The planner in [18] initially allows the robot to pen-
etrate the obstacles to a certain extent. Small neighborhoods around
the configurations just in collision are then re-sampled in order to place
nodes close to the boundary of F. The Obstacle Based PRM (OBPRM)
in [2] and [3], repeatedly determines a configuration in collision to be the
origin of a number of rays. Binary search is then used along each ray
to find points on the boundary of F, where roadmap nodes are placed.
In [9], another idea is presented. The planner identifies the boundary of
F by distributing points in pairs. Each pair is generated by first picking
one point uniformly at random in C, and then picking another point
close to the first one. One of the points is added to the roadmap only if
it is in F and the other point is not. Yet another technique to increase
the number of nodes in narrow passages of F is presented in [41]. Points
are picked uniformly at random in C and then retracted onto the medial
axis of F. Retraction to the medial axis of the workspace is done in
[10].

Randomized approaches related to PRM are described in [19] and [30].
These build two trees rooted at the initial and goal configurations respec-
tively. As soon as the trees intersect, a feasible path can be extracted.
What differs these two methods is the way of expanding the trees. In [19],
the trees are expanded by generating new nodes randomly in the vicinity
of the two trees, and connecting them to the trees by a local planner.
The planner in [30] iteratively generates a configuration, an attractor,
uniformly at random in C. Then, for both trees, the node closest to the
attractor is selected and a local planner searches for a path of a certain
maximum length towards the attractor. A new node is placed at the end
of both paths. A new attractor is selected until the two trees intersect.

The algorithm in [29] is a method to keep the number of nodes in
the roadmap to a minimum. Candidate nodes are generated uniformly
at random, one at a time. A node is inserted to the roadmap only if
it can be connected to at least two components of the roadmap, or if
it does not see any other node. In the former case the components are
merged, and in the latter case a new component is created. Variations
of PRM have also been used for manipulation planning and for robots
with closed kinematic chains, see [16, 31, 35].



A Randomized Approach to Robot Path Planning 9

5. DESIGNING AN EFFICIENT
RANDOMIZED PLANNER USING A
LAZY EVALUATION SCHEME

5.1 MOTIVATION

In many applications, the configuration space changes frequently. For
example, as soon as the robot changes tools, grasps or deforms an ob-
ject, or when a new obstacle enters the workspace, the feasible part F is
affected. A planner useful in practice must be able to plan in new config-
uration spaces instantly, so long preprocessing must be avoided. Ideally,
the time required for planning should relate to the difficulty of the plan-
ning task, i.e., a simple path in an uncluttered environment should be
found quickly, while a more complicated path may require more time.

In a similar way, the planning time should relate to the desired quality
of the solution path. The quality of a path is difficult to quantify (see
further discussion in Section 5.4), but in general we prefer short paths
in C, with respect to some metric.

We would also like the planner to learn to some extent, i.e., to use in-
formation from previous queries in order to speed up subsequent queries.
For example, if the algorithm finds a path through a narrow passage in
F, it should be able to use that information when searching for a new
path back through the passage.

The general theme for roadmap algorithms is to construct a network
of paths verified to be collision-free by a local planner. Unfortunately,
it is difficult to find a global strategy that can use these local planners
efficiently in order to avoid traps and dead ends. In environments with
complex geometry and expensive collision checks, this often means that
too much time is spent on planning local paths that will not appear in the
final path. So, even though PRM fulfills most of the above requirements,
it is too slow in many applications.

Our solution is to avoid using local planners as much as possible, and
instead keep a global view through the entire planning process. In this
section we present Lazy PRM - a path planning algorithm tailored for
single queries in high-dimensional, relatively uncluttered configuration
spaces. We address the problem of finding simple paths quickly in in-
dustrial environments with complex geometry. In these environments
collision checking is computationally expensive, so to make the planner
fast, the main theme is to minimize the number of collision checks.



10

5.2 OVERALL SCHEME OF LAZY PRM

This section describes a new algorithm for single query path planning.
The algorithm is similar to the basic PRM in [25] in the sense that the
aim is to find the shortest path in a roadmap generated by randomly
distributed configurations. In contrast with existing PRMs, we do not
build a roadmap of feasible paths, but rather a roadmap of paths as-
sumed to be feasible. The idea is to lazily evaluate the feasibility of the
roadmap as planning queries are processed.

In other words, let g;yit, @goq;, @and a number of uniformly distributed
configurations form nodes in a roadmap. We connect by edges each pair
of nodes being sufficiently close together. Lazy PRM finds a shortest
feasible path in the roadmap by repeatedly searching for a shortest path,
and then checking whether it is collision-free or not. Each time a collision
occurs, the corresponding node or edge is removed from the roadmap,
and then Lazy PRM searches for a new shortest path.

This procedure can terminate in either of two ways. If there exist
feasible paths in the roadmap between q;,;; and g4, we will find a
shortest one among them. Otherwise, if there is no feasible path, we
will eventually find g;,;; and g, in two disjoint components of the
roadmap. In the latter case, we can either report failure, or, if we still
have time, add more nodes to the roadmap in a similar way to the
node enhancement in [24, 25|, and start searching again. A high-level
description of the algorithm is given in Figure 1.2.

The point by using this scheme for lazy evaluation is that we only
explore the part of the roadmap that is needed for the current query.
The scheme is simple, general and can be applied also to other roadmap
planners in order to increase performance. The strength is to either find
a collision-free path or to conclude that none exists in the roadmap by
using a small number of collision checks. It is always an advantage to use
lazy evaluation since we can never do more work, in terms of collision
checking, than basic PRM would do.

The rest of this section explains the different steps of the algorithm
in more detail, Section 6 gives a proof of its probabilistic completeness,
and Section 7 shows some experimental results.

5.3 BUILDING THE INITIAL ROADMAP

The first step in the algorithm is to build a roadmap G in C. There
are two parameters that determine the size of G; the number of nodes,
Ninit, and the expected number of neighbors, M,,;44p, connected to each
node.



A Randomized Approach to Robot Path Planning 11

Qinit qgoal

Build initial
roadmap

[Remove colliding] Node
node / edge Y ¢ » enhancement

¥ Search for a X
Main | SPortest path No path found
loop Y
Check path
Collision for collision

/
Collision-free path
Figure 1.2 High-level description of Lazy PRM.

Initial Distribution of Nodes. Initially, we distribute N;,;; points
uniformly at random in C. These points, together with g;,;; € F and
9goal € F, form nodes in G. An important issue is the choice of N;p;:.
The initial density of nodes, determined by Nj,;:, is strongly correlated
to the probability of finding a short path, if one exists. The correlation
is hard to quantify, but the following example may give an illustration.
Assume there exist only two ways to get to the goal configuration; either
a short path through a rather narrow corridor, or a somewhat longer
path through a wide corridor. If G is sufficiently dense, the algorithm
will find a short path through the narrow passage, see Figure 1.3(b). If G
is sparse, the algorithm will find a longer path through the wide passage,
see Figure 1.3(a). In the worst case, if the roadmap is too sparse, there
will be no feasible path at all in the roadmap, and the algorithm has to
go to the enhancement step to generate more nodes. On the other hand,
if Njpi is too large, we will distribute more nodes than necessary, see
Figure 1.3(c). Although we may obtain better paths, this will lead to
somewhat longer planning times.

However, the idea behind the algorithm is that only a small fraction
of the nodes in the roadmap will be necessary to check for collision. This
makes the algorithm relatively insensitive to high density of nodes, so
we can choose Nj,;; relatively large. (In our experiments we start with
Nipnit = 10000 nodes and check on average 322 nodes in the most difficult
planning task, see Task D — E in Table 1.1(a), Section 7.) The number
of nodes required to find a path is further explored in Section 6.

Selecting Neighbors. To build the roadmap we connect each node
in G by edges to a set of neighbor nodes. An edge represents the straight



ARAON %

AT
PAVEUAEN

i
AN AP
r‘m.ya{gé:'é

COINNPRALY N D
‘ﬁ%ﬁﬁ AN

Figure 1.3 Example of a two-dimensional configuration space with rectangular ob-
stacles (grey). The thick lines show the shortest feasible paths between g,,;, and
Qg0 in three different roadmaps. The roadmap in (a) is too sparse and no short
feasible path exists. The roadmap in (c) is very dense, and the shortest feasible path
will take longer time to find than the shortest feasible path in (b).

line path in C between two nodes. Neither the nodes nor the edges are
being checked for collision in the initial step, but we want, of course, to
have edges which are likely to be feasible. Since it would require far too
much memory to connect all pairs of nodes, and it is unlikely that the
straight line path between two nodes far apart is feasible, it is natural
to only consider nodes which are sufficiently close together.

In order to select appropriate neighbors, we need a metric peoy : C X
C — [0,00) such that the distance between two configurations under
this metric reflects the difficulty of connecting them by a collision-free
straight line path. Then we connect each pair of nodes (q,q’) such
that peoir(q@,q') < Rpeighs- For any fixed radius Ryeighs, the number
of neighbors of a node is a random variable, so depending on the initial
number of nodes Nj,;;, we choose R,,.;gnp such that the expected number
of neighbors equals the parameter M,;gny introduced in the beginning
of Section 5.3.

In many cases it is harder to make feasible connections in certain
directions than in others. Consider for instance an articulated robot
arm; then it is more likely that a collision occurs when the base joint is
moving one unit, than if a joint close to the end-effector is moving one
unit. With this in mind, we let p.,; be a weighted Euclidean metric,

d 1/2
pcoll(ma y) = (Z wzQ("L'Z - yZ)2>
=1

= (e-9)"W(@-1y)" (1.1)



A Randomized Approach to Robot Path Planning 13

where d is the dimension of C, {w;}? ; are positive weights, W =
diag(w?, ..., w3), and &7 is the transpose of . The weights are chosen
in proportion to the maximum possible distance (Euclidean distance in
the workspace) traveled by any point on the robot, when moving one
unit in C along the corresponding axis. This metric is easy to use and
has been shown to work well in our experiments presented in Section 7.

5.4 SEARCHING FOR A SHORTEST PATH

The second step in the algorithm is to find a shortest path in G be-
tween @;p;; and gguq;, or determine that none exists. We use the A*
algorithm [33], and a metric ppip : C x C — [0,00) to measure the
length of a path and the remaining distance to qgo4-

If the search procedure succeeds in finding a path, we need to check
it for collision. Otherwise, if no path exists in the roadmap, we either
report failure, or go to the node enhancement step to add more nodes
to the roadmap and start searching again depending on the overall time
allowed to solve the problem.

Choosing an Appropriate Metric for A*. The tool available to
give preference to certain paths and reject others is the metric ppaep.
Thus, by defining this metric we decide which paths are assumed to be
of high quality and which paths are assumed to be of poor quality.

In this paper we focus on articulated robots and use the FEuclidean
configuration space I; X- - - X I, where I; is the range of joint 7 and d is the
number of dof. Thus, we do not identify angles equal modulo 27 as being
equal, although they define the same position in the workspace. This is
because a real robot in general has supply wires, etc., which otherwise
would be entangled. The metric ppq, is a weighted Euclidean metric,
similar to (1.1), where the weights are equal to v%-’ 1 =1,...,d, where v;
is the maximum angular velocity of joint . This tends to give preference
to paths with short execution time, which in many applications is the
most interesting response variable.

In the general case, however, there are a large number of other re-
sponse variables to consider. Some of them are measurable such as
energy consumption, dynamic forces on joints, etc. Others are more
subjective; for example, the motion should look natural and smooth
from the user’s point of view. Under any Euclidean metric, the straight
line path in C between two configurations is the shortest, but considering
all of these response variables, the straight line path is not necessarily
optimal. Thus, the choice of a configuration space parameterization and
an appropriate metric is an intricate task in itself.



14

5.5 CHECKING PATHS FOR COLLISION

When the A* algorithm has found a shortest path in the roadmap
between g;,,;; and g4, we need to check the nodes and edges along the
path for collision. In most applications it is straightforward to perform a
collision check for a given configuration, i.e. determine whether a point
is in F or not [11, 32, 39]. It is considerably more expensive to check
whether a path segment is entirely in F or not. To keep the planner
as simple and general as possible, we only use a collision checker for
points in C; path segments, i.e. edges in the roadmap, are discretized
and checked with a certain resolution. However, in [6, 7] we describe
a variation of the algorithm which makes use of a function giving the
minimum distance between the robot and the obstacles.

The overall purpose of the Search, Check, and Remove steps of our al-
gorithm (the main loop in Figure 1.2), is roughly to identify and remove
colliding nodes and edges from the roadmap until the shortest path be-
tween @;n;; and g, is feasible. Accordingly, when checking a path for
collision, we are not primarily interested in verifying whether an indi-
vidual node or edge is in F or not, but rather to remove colliding nodes
and edges as efficiently as possible. Since a removal of a node implies
all its connected edges to be removed, it seems reasonable to check the
feasibility of the nodes along the path before checking the edges.

Checking Nodes. Starting respectively with the first and the last
node on the examined path and working toward the center, we alter-
nately check the nodes along the path. As soon as a collision is found,
we remove the corresponding node and its connected edges from the
roadmap, and search for a new shortest path.

The reason for checking the nodes in this order is that the probability
of having the shortest feasible path via a particular node is higher if the
node is close to either g;,;; or qg,,. Consider, for instance, the nodes
connected to g,,;;; a shortest feasible path (if one exists) must pass
through at least one of them. Since, in a cluttered space, we cannot give
preference to certain directions, the probability of having the shortest
feasible path via a particular neighbor of g;,;; is at least 1/b, where
b is the number of neighbors of g;,;;- Nodes connected to gy, have
a similar probability, whereas nodes further away from both g;,;; and
4404 have a much lower probability of being in the shortest feasible path.
Therefore, we check the nodes along a path starting from the end-nodes
and working toward the center.

Checking Edges. If all nodes along the path are in F, we start check-
ing the edges in a similar fashion; working from the outside in. However,



A Randomized Approach to Robot Path Planning 15

to minimize the risk of doing unnecessary collision checks, we first check
all edges along the path with a coarse resolution, and then do stepwise
refinements until the specified resolution is reached. As with the nodes,
if a collision is found, we remove the corresponding edge, and search for
a new shortest path. If no collision is found along the path, the algo-
rithm terminates and returns the collision-free path. Figure 1.4 gives
an illustration. To make the overall algorithm efficient, we record which
nodes have been checked for collision, and to which resolution each edge
has been checked, in order to avoid checking any point in C more than
once.

The total number of collision checks depends on the resolution with
which the edges along the path are checked. Again, since p.o; reflects
the probability of collision, we determine the resolution with respect to
this metric. The resolution is quantified by a step-size §, but we prefer
not to let the user specify the step-size by a certain number, because the
resolution should depend on the scale of C and the weights defining the
metric. A better way is to introduce a parameter M.y, specifying the
number of collision checks required to check the longest possible straight
line path in C. In other words, assuming that C is a d-dimensional
rectangle and g and q' are two opposite corners, the step-size is related
to the length of the diagonal of C according to

5 = Peol(3:4)
Meon

5.6 NODE ENHANCEMENT

If the search procedure in Figure 1.2 fails, no feasible path between
Qinit and g0, exists in the roadmap, and more nodes are necessary in
order to find one. In the node enhancement step, we generate N, new
nodes, add them to G, and select neighbors in the same way as when G
was initially built.

We may not only distribute the new nodes uniformly, but rather use
the information available in the roadmap (or what is left of the roadmap),
in order to distribute new nodes in difficult regions of C. In a method
similar to the node enhancement in [24, 25|, we randomly select a number
of points in G, called seeds, and then distribute a new point close to
each of them. Our experience is that it is better to select many seeds
and distribute one new node around each of them, instead of selecting
few seeds and distribute several nodes around each of them; the latter
method is more dependent on the selection of seeds.

Although the seeds may help us identify difficult regions of C, we still
want to maintain a smooth distribution all over C, because the knowledge



16

(a): Lazy PRM searches for a short-
est path and checks the nodes. A
collision is detected (*) and corre-
sponding node is removed from the
roadmap.

(b):  Then Lazy PRM searches
for a new shortest path, detects a
new collision (%) and removes corre-
sponding node.

(c): After a few iterations, a se-
quence of feasible nodes is found.
When checking the edges with a
coarse resolution a collision is found
(¥). The edge is removed from the
roadmap, and the planner searches
for a new shortest path.

(d): Eventually, the planner finds a
path whose nodes are collision-free,
and whose edges are collision-free to
a specified resolution.

Figure 1.4 Example of a planning query in a two-dimensional configuration space
with rectangular obstacles (grey). All collision checks performed are marked with =

(collision) or e (collision-free).



A Randomized Approach to Robot Path Planning 17

about C is limited and we do not want to rely too much on the selection
of seeds. To ensure probabilistic completeness (see Section 6), we also
distribute new nodes uniformly at random in each step. In our algorithm,
we let half of the enhancement nodes be uniformly distributed, and the
rest distributed around seeds.

Selecting Seeds. The set of edges which have been removed from the
roadmap and have at least one end-point in F will certainly intersect
the boundary of F. Using the mid-points of these edges as seeds may
help us distribute points close to the boundary of F, thus increase the
probability of finding paths through narrow passages in F.

However, if the enhancement step is executed several times, this may
cause problems with clustering of nodes. Assume that we add a new node
g. This node will give rise to a number of edges which in the next en-
hancement step may increase the probability of adding even more nodes
close to q. Thus, the distribution of new enhancement nodes depends on
the preceding enhancement steps, and may eventually cause undesired
clusters of nodes. To avoid this phenomenon, we only use edges whose
end-nodes are generated uniformly at random when selecting seeds.

Distributing New Nodes. When distributing a new point g around
a seed 7, we use the multivariate normal distribution. This distribution
is smooth, easy to use, and allows us to control the distribution of g
in terms of the metric p.,;.- Hence, we can stretch the distribution
in directions where the probabilities of making feasible connections are
higher.

Introducing two parameters o € (0,1) and A > 0, we can choose the
distribution such that

pcoll(qa 7’) < ARneighb (1'2)

is an event with probability 1—c, see Figure 1.5. Rpeignp is the maximum
length of an edge defined in Section 5.3. To achieve this property, we
define a covariance matrix X as follows:
22
¥ = wal (1.3)
5 . .
Xd(a)

Here W is the same as in (1.1) and x?%(«) is the upper a percentile of a
x2-distribution with d dof. Then we let the new point ¢ ~ Ny(n, ), i.e.,
q is multivariate normally distributed with d dof, mean 1, and covariance
matrix 3. Since ¥ is diagonal, this simply means that each component
gi,t = 1,...,d, of g is normally distributed with mean 7; and variance
Ei,i-



18

{q €C: pcoll(‘]a "7) = A}277,eighb}

q2

Figure 1.5 Example of a seed 1 in a two-dimensional configuration space. If a new
point q is distributed according to Ng(m,X), with ¥ as in (1.3), then q is distributed
within the confidence ellipse (solid line) with probability 1 — c. The dashed ellipses
are contours of the distribution function. w; and wy are the weights defined in (1.1).

To show (1.2), we use that (g — )" S~!(q —n) is x2-distributed with
d dof [22]. Thus, the event

(@—n)"S Ha—n) < xia)

has probability 1 —«. Using (1.1) and (1.3) gives the confidence ellipsoid
in (1.2).

We see in (1.3) that ¥ depends on the the ratio A?/x3(c). Since
both A%, A > 0, and x3(e), a € (0,1), are continuous functions whose
ranges are (0,00), one of the two parameters o and ) is redundant, so
we can without loss of generality choose o = 0.05. Then, the parameter
A controls the size of the 95% confidence ellipsoid relative to Ryeigns
as shown in Figure 1.5. In our experiments we found that A = 1 is a
suitable choice.

Another possibility of distributing the new point g, is to let it be
uniformly distributed in a rectangular box centered at n. If we let the
sides of the box be of equal length under p..;;, we stretch the box in
a similar way as the ellipsoids above. In our path planning algorithm,
however, the normal distribution has a major advantage compared to
the uniform distribution; the contours of the distribution function are
ellipsoids around 7 (see Figure 1.5). Hence, under the metric peyy, which
reflects the difficulty of making connections, the distribution is symmet-
ric around 7. In contrast, the uniform distribution favors the directions



A Randomized Approach to Robot Path Planning 19

of the corners of the box, and nodes are more frequently distributed
there than in other directions.

5.7 MULTIPLE QUERIES

When the planner has found a collision-free path, it terminates and
returns the path. The information about which nodes and edges have
been checked for collision is stored in the roadmap. As long as the
configuration space remains the same, we use the same roadmap when
processing subsequent queries. Thus, we benefit from the information
obtained in each planning query. The new initial and goal configurations
are simply added to the roadmap, and the same algorithm, except for
the initial generation of nodes, is run again.

As several queries are processed, more and more of the roadmap will
be explored, and the planner will eventually find paths via nodes and
edges which have already been checked for collision. This makes the
planner efficient for multiple queries.

Even in the long run, many nodes and edges may never be explored
since they are located in odd regions of C. Thus, given a fixed size of
the roadmap, the number of collision checks performed by Lazy PRM
will never exceed the number of collision checks performed by the basic
PRM described in Section 4.1. Accordingly, there is no reason to entirely
evaluate the roadmap unless we explicitly want it. The lazy evaluation
scheme will find the shortest feasible path in the roadmap by using less
collision checks.

6. PROBABILISTIC COMPLETENESS

In this section we give a proof of probabilistic completeness of Lazy
PRM. Before stating the theorem, which also can be found in [7], we
need some notation. Let 7 : [0,L] — F be a curve (also called path)
parameterized by arc length and with continuous tangent. A tube 7 of
radius 7 around (s) is the set of points at distance r from v measured
perpendicular to the tangent /(s). Similarly, the corresponding solid
tube is the set of points at distance < r from . For simplicity, we
usually omit the word solid.

A regular tube is a tube that does not intersect itself. If v is enclosed
by a regular tube of radius r, this particularly implies that its curvature,
k(s) = |7"(s)|, is bounded from above by 1/r. Otherwise the tube would
be folded. The following lemma, proved in [14], states a useful property
of regular tubes.



20

Lemma 1 The volume enclosed by a reqular tube around a curve in a
d-dimensional Fuclidean space is the product of the length of the curve
and the (d — 1)-dimensional area of a cross-section.

In other words, if Bﬁl is the ball of radius r in a d-dimensional space,
and pg the Lebesgue measure, we can express the volume of a regular
tube 7 of radius r around 7y as

pa(t) = Lpg1(BE1) = Lr®! pg_1(BIY), (1.4)

where L is the length of ~.

Assuming there exists a path between g;,;, and g, enclosed by a
regular tube in F, the following theorem gives an upper bound on the
probability of failure to find a path between g;,;; and qgo,;. The assump-
tion of an enclosing tube in F is relevant since F is an open subset of C.
Moreover, the theorem says that the probability of failure decreases ex-
ponentially in the total number of uniformly distributed nodes V. Since
N increases in each enhancement step (Figure 1.2 and Section 5.6), the
probability of failure vanishes as time tends to infinity. This is equivalent
to the definition of probabilistic completeness, see [20]. Thus, Lazy PRM
is a probabilistically complete path planner. Since the configuration
space is at least two-dimensional (otherwise path planning is trivial), we
assume that d > 2. Recalling the parameter R,c;45p from Section 5.3
and the matrix W defined in (1.1) with norm ||[W||, we formulate the
theorem as follows.

Theorem 1 Let N be the total number of nodes generated uniformly at
random in C. If there exists a path vy between @,y and qgoq, enclosed by

a reqular tube 7 of radius R < WRneighb entirely in F, then Lazy
PRM will fail to find a path with probability at most

L
.
_ Ripug_ (BT :
where § = T3duaC) and L is the length of .

Proof. Let u =R/d,r = R(1—1/d), and k = |L/u|. The idea of the
proof is to take a tube of radius r, divide it into £ — 1 cells of length
u, and calculate the probability of having at least one node in each cell.
We will show that any two points in adjacent cells can be connected by
a straight line, and that one node in each cell is enough for the planner
to succeed. Assume first that & > 2. The case k < 2 is trivial and will
be considered at the end of the proof.



A Randomized Approach to Robot Path Planning 21

Figure 1.6 Illustration to the proof of Theorem 1.

Let s; =4u, i =1,...,k, and let 7; be the tube segment around ~y(s)
for s € [s4,8i+1), @ = 1,...,k — 1, see Figure 1.6. The tube segments
{7 f:_f are pairwise disjoint and, by (1.4),

5 . Bd*l
pa(mi) _ a1 Ha-1(Bi )

pa(C) 1a(C)

Now, for d > 2, (1—1/d)%! is a decreasing function whose limit is e,
and since

AR R

R A ) A e A
we get that
. d d1
palri) o BT paa(By ) _ 8, (1.5)
pa(C) 3d p1a(C)

The N points generated by the algorithm are uniformly and indepen-
dently distributed in C. Thus, the probability that 7; is empty equals

(1 — %)N, which, by (1.5), can be estimated:

Md(Ti))N N
1— <(1-p)". 1.6

Let B%(s) be a ball of radius R centered at 7(s), i.e., B&(s) has the
same radius as 7. Unless B%(s) is close to the end-points of 7, it will be
covered by 7, see Figure 1.6. If it is close to the end-points, however, it



22

might intersect the circular discs at the ends of the tube. Nevertheless,
the intersection between B%(s) and 7 is still convex, a property we will
need later.

Now, let gq;_; € 7;_1 and q; € 7;. By the definition of a tube there
exists an o; € [s;, s;+1) such that |g; — v(o;)| < r. Since 7 is parame-
terized by arc length, it follows that |y(s) — v(t)| < |s — t|, and, by the
triangle inequality,

lg; —v(oi)| + |v(03) —v(s4)]
r+u=R.

lg; —v(ss)] <
<

Hence, the ball B%(s;) contains 7;. Similarly, we can show that it also
contains 7;_1. Since both cells are covered by 7, they are contained in
the convex set B;iz(si) N 7 which is entirely in F. Thus, q;_; and g; are
at most 2R apart and the straight line between them lies entirely in F.
From (1.1) we get that

peott(@i_1: @) < @it — ail |W/?
< 2R|W|'?
< Rneighba

i.e., any node in 7;_1 is in the neighborhood of any node in 7; and
will therefore be interconnected by Lazy PRM. Moreover, since g;,,;; €
Bf(s1) and gy, € Bf(sk), they will be connected to any node in 7
and 7;_1 respectively. Consequently, it is enough to have at least one
node in each of the cells 71,...,7,_1, in order for Lazy PRM to find a
collision-free path between g;,;; or ggoq-

The probability of failure for our algorithm, Pjiure, can now be esti-
mated:

Praiture < P(some 7; is empty)
k—1
< Z P(7; is empty)
i=1
< k-DA-H",

where we used Boole’s inequality and (1.6) in the second and third step
respectively. Using that k¥ — 1 < Ld/R and (1 — )V < e PN gives the
desired estimation.

What remains is the case k < 2, i.e., L < 2u = 2R/d < 2R. Then
both g;p,;; and g, are contained in the convex set B%(L/2) N1 which
is entirely in F. This guarantees that Lazy PRM will find the straight



A Randomized Approach to Robot Path Planning 23

line path between g;,;; and gg,q;, so the probability of failure is zero. O

Note that a related theorem regarding basic PRM can be found in [4]
and [23]. Both theorems give a bound on the failure probability ex-
pressed in terms of, among other variables, the density of nodes. An
important difference is that Lazy PRM has to reach a certain density
of nodes in C, while basic PRM has to reach approximately the same
density in F. This seems like a weakness of our method, but looking
at how the nodes in basic PRM are generated, we see that this is not
the case. In order to reach the desired density in F, basic PRM has
to distribute nodes uniformly all over C and exclude those in collision.
Consequently, for both algorithms to reach the same density, the number
of nodes checked for collision in the learning phase of basic PRM has to
be the same as the number of uniformly distributed nodes in Lazy PRM.
So whether the density is specified in F or in C does not matter. The
difference of practical significance is that Lazy PRM avoids checking all
of the nodes for collision.

7. EXPERIMENTAL RESULTS

In this section we present performance tests of Lazy PRM when ap-
plied to a six dof robot in a realistic industrial environment. The planner
has been implemented in C++ as a plug-in module to RobotStudio® —
a simulation and off-line programming software running under Windows
NT. The collision checks are handled internally in RobotStudio. The
experiments have been run on a PC with a 400 MHz Pentium II proces-
sor and 512 MB RAM. In all tests we let Njn;; = 10000, Meigns = 60,
Mcoll = 200, and Nenh = 500.

7.1 PATH PLANNING TASKS

The test example is a part of a real manufacturing process in which
an ABB 4400 robot is tending press breaking. Metal sheets are formed
by the hydraulic press shown in Figure 1.7. In this particular example,
plane sheets of metal are picked at a pallet, bent once at the hydraulic
press, and then placed at another pallet.

The process is divided into several steps, and our aim is to automati-
cally plan the unconstrained paths of the robot. We let A to E denote
five different configurations shown in Figures 1.7 and 1.8. These are used
as either initial or goal configurations in four planning tasks, denoted for

IRobotStudio is developed by ABB Robotics, Goteborg, Sweden.



24

Figure 1.7 The work cell used in the experiments. The robot is in its
home configuration denoted by A.

example A — B, where A is the initial configuration and B is the goal
configuration.

The scenario is as follows. Starting from the home configuration A,
the robot picks a sheet of metal from the pallet at B (task A — B) and
puts the sheet-metal at the press C (task B — C). After the breaking,
the robot grasps the sheet-metal at D, places the sheet-metal at the
pallet E (task D — E), and then returns to the home configuration A
(task E — A).

Note that during this series of steps, the configuration space changes
several times. As soon as we grasp or place a sheet of metal, the collision-
free part, F, is changing. Accordingly, we have four different configura-
tion spaces in which to plan, and we have to build one roadmap in each
of them.

The results include the number of collision checks, the number of
enhancement steps, and the planning time. The minimum, average, and
maximum values, based on 20 consecutive runs for each task, are shown
in Table 1.1(a). The average number of collision checks performed on
nodes and edges respectively are presented, as well as the average number
of collision checks performed on the collision-free paths that the planner
returned. Since paths are checked for collision with a certain resolution



A Randomized Approach to Robot Path Planning 25

-

AN\
Configuration B

e

Configuration D Configuration E
Figure 1.8 Configurations B to E used in the experiments.

(see Section 5.5), the latter figures correspond to the lengths of the
collision-free paths.

The running times in Table 1.1(a) are divided into three parts. First,
graph building, which includes distance calculations between nodes in C
and node and edge adding, second, graph searching, and finally collision
checking.

In the last column of Table 1.1, the average values of the recorded data
are summed up. Thus, the last column indicates the average number of
collision checks and average planning times for the entire press breaking
operation.

In Table 1.1(b), we have included some results corresponding to the
learning phase without node enhancement of basic PRM. For each task,
we generated a roadmap in exactly the same way as Lazy PRM generates
roadmaps in the initial step. Then we checked all nodes for collision,



26

deleted the colliding ones, and then checked all of the remaining edges as
described in Section 5.5. In other words, we checked the entire roadmap
for collision as efficiently as possible. Due to the long running times, only
one full roadmap was explored for each task. The result gives an indica-
tion of how large fraction of the roadmap that really has to be explored,
and the amount of work saved by our lazy approach, in this particular
example. Note this is a conservative estimate since even with this long
preprocessing, there is no guarantee that the remaining roadmap will
contain a feasible path. Table 1.1(b) shows whether a collision-free path
was found or not. We see in 1.1(a) that several enhancement steps are
needed with Lazy PRM, thus indicating that node enhancement also is
needed with basic PRM, and this will further increase running times and
the number of collision checks.

7.2 INTERPRETATION OF RESULTS

We clearly see in Table 1.1(a) that collision checking represents the
vast majority of the planning time (79%), but also that the graph build-
ing takes a lot of time (19%). Interestingly, the time spent on graph
searching is negligible, about 2%. Although we carefully select the points
to check for collision by frequently searching the roadmap for a shortest
path, the total time spent on that is very short.

The initial roadmaps consist of N;,;; = 10,000 nodes in all experi-
ments. We see in Table 1.1(b) that the number of collision checks re-
quired to explore one entire roadmap is of order 500,000. Table 1.1(a)
shows, on the other hand, that Lazy PRM in average solves the dif-
ferent planning tasks in 92 to 693 collision checks. Thus, Lazy PRM
only explores a small fraction, less than 0.1%, of the roadmap. This is
the strength of the algorithm; to either find a collision-free path or to
conclude that none exists in the roadmap by using a small number of
collision checks.

We also see in Table 1.1(a) that a large percentage, 27%, of the total
number of collision checks are actually performed on the collision-free
solution paths, and are therefore inevitable. This large percentage can
be explained by two reasons. First, the algorithm finds a sequence of
collision-free nodes before edges are being checked. This prevents from
planning local paths in dead ends and in regions from where no way out
exists. Secondly, we check the edges along the path starting from both
ends with increasing resolution and stop as soon as a collision occurs.
The colliding edge is removed from the roadmap, and a new shortest
path is found. Thus, we avoid using a local planner and instead keep
a global view throughout the planning process. As a consequence, very



A Randomized Approach to Robot Path Planning 27

few edges — often only the edges along the final path — are checked with
the finest resolution. This also makes the algorithm relatively insensitive
to the resolution with which the paths are checked.

Since all of the nodes in the initial roadmap are uniformly distributed,
the number of collision-free nodes found by basic PRM will give a good
estimation of the relative size of F. We see in Table 1.1(b) that for the
tasks A - B and E — A approximately 40% of C is collision-free. For
the other tasks approximately 30% of C is collision-free. As expected,
the free part of C is reduced when the robot grasps a sheet of metal.

Furthermore, from the planner’s point of view, the robot’s tool in-
cludes both the gripper and possibly also a sheet of metal attached to it.
If the tool is large and irregularly shaped, then its orientation becomes
more important, whereas if the tool is small (e.g. the gripper only),
the wrist motions of the robot, which basically determine the orienta-
tion, become less important. In this kind of environment, the planning
problem is significantly easier if the tool is small. This explains why the
tasks A — B and E — A are successfully planned without any node
enhancement, and reveals the strength of our method in adapting to the
difficulty of the problem.

8. DISCUSSION

The aim of Lazy PRM is essentially to minimize the number of colli-
sion checks while searching for the shortest feasible path in a roadmap in
the context of a PRM planner. This is done on the expense of frequent
graph search. For a complex robot working in a complex workspace,
like our six dof example, collision checking is an expensive operation,
and careful selection of the points being checked for collision reduces the
planning time considerably.

However, if the robot and the obstacles have a very simple geometry,
then collision checking is very fast. Frequent graph searching may, in-
stead of speeding up the planning, become a bottleneck. Trading some
collision checking for less graph searching may increase performance of
Lazy PRM. So, instead of re-planning the entire path every time a col-
lision is found, we can try to remove several nodes from the roadmap in
each iteration of the main loop, see Figure 1.2. A simple way would be
to always check all nodes along a path before searching for a new path.

Another modification of Lazy PRM is necessary when the configura-
tion space is very cluttered. This is, for instance, the case with the ten
dof robot in [24], where more than 99% of the configuration space is
infeasible. If we run our algorithm, we would need a large number of
nodes in the initial roadmap, and then remove from the roadmap ap-



28

Table 1.1 Performance data for Lazy PRM based on 20 consecutive runs for each
task. Table 1.1(b) shows data for basic PRM based on one run for each task. The

initial number of nodes, N;,it, is 10000 in all tests.

Task
A—-B B—C D—E E—A Total
Lazy PRM
Number of collision checks
-for nodes ave 9 209 322 18 558(37%)
-for edges ave 83 387 371 124 965(63%)
min 74 169 151 81
-total ave 92 596 693 142 1523
max 131 1114 1301 299
-for returned path ave 78 136 117 82 413(27%)
Number of enh. steps
min 0 0 0 0
ave 0 1.3 1.7 0
max 0 3 4 0
Running time (sec.)
-graph building ave 6.6 7.9 8.5 6.6 29.6(19%)
-graph searching  ave 0 0.9 3.0 0 3.9(2%)
-coll. checking ave 6.1 45.7 62.4 11.6  125.8(79%)
min 11.2 19.1 21.4 13.0
-total ave  12.7 54.5 73.9 18.2  159.3
max 16.2 102.7 133.5 31.2
Table 1.1(a).
PRM
Number of collision checks
-for nodes 10000 10000 10000 10000
of which in F 4085 2980 3041 4121
-for edges 763063 419613 446782 787507
-total 773063 429613 456782 797507
Running time (sec.)
-total 56625 32088 35115 56234
Found feasible path yes yes no yes

Table 1.1(b).



A Randomized Approach to Robot Path Planning 29

proximately 99% of the nodes being checked, which would take a lot of
time. Fortunately, we can easily modify Lazy PRM to check all nodes
before we insert them into the roadmap. This would certainly cause
unnecessary nodes to be checked for collision, but, on the other hand,
we would save many inserting and removing operations in the roadmap.
After that, we still have the efficient way of exploring the edges along
paths. In this way, the lazy approach can be employed with most of the
existing sampling schemes and variations of PRM discussed in Section
4.2.

Our primary interest in this project has been path planning in indus-
trial environments, and the experimental results show that Lazy PRM
works well in practice. By using either or both of the two modifications
of the algorithm suggested above, we can tune the amount of graph
search according to the application and the time required to perform a
collision check, so that Lazy PRM becomes efficient for an even wider
range of problems.

As far as future work is concerned let us note the following. Lazy
PRM has essentially one parameter that is critical for the performance
— Ninit, the initial number of nodes. As indicated in Theorem 1, Nyt
is strongly correlated to the probability of finding a feasible path with-
out using the node enhancement step. The optimal choice depends on
the dimension of C, the workspace, the planning task, and the desired
quality of the solution path. Our future work includes an investiga-
tion of the dependence between N;u;: and the planning time in different
environments, as well as different distributions of the nodes.

Randomized techniques, like Lazy PRM, often give very fast planning.
In Table 1.1(a), however, we can see that the maximum planning time is
approximately twice as long as the average planning time. New improved
enhancement techniques, in order to make the algorithms more robust
in the sense that the worst case performance is improved, will also be a
topic of our future research.

9. SUMMARY

The advantage of considering the path planning problem in the con-
figuration space is that even the most complicated robot is transformed
into a single point. On the other hand, simple obstacles in the workspace
generally become very complicated in the configuration space. Thus, we
trade complex robots and simple obstacles for simple robots and com-
plex obstacles. The new problem is essentially to explore an unknown
space. But without a priori knowledge, or assumptions of the properties
of the space, it is hard to construct powerful heuristic algorithms that



30

can solve the problem. This is where randomized techniques have shown
to be very useful, particularly in high-dimensional configuration spaces.
Randomized planners (like PRM and Lazy PRM) are generally easy to
implement and very efficient in exploring unknown environments, which
make them popular and applicable to a wide variety of problems.

In this paper we further develop randomized planning techniques in
the direction of achieving general and practically useful single query
planners. We address standard industrial applications characterized by
complex geometry and high-dimensional, relatively uncluttered config-
uration spaces. Our algorithm — called Lazy PRM — is based upon a
general scheme for lazy evaluation of the feasibility of the roadmap.
The scheme is simple and general and can be applied to any graph that
needs to be explored. In addition to Lazy PRM, most other existing
variations of PRM, and other related algorithms, can benefit from this
scheme and significantly increase performance.

Acknowledgments

The authors would like to thank Bo Johansson and ABB Robotics for supporting
the project and for providing suitable software. The core of this work was performed
during the visit of Robert Bohlin to the Physical Computing Group at the Computer
Science Department of Rice University. Robert Bohlin was supported by NUTEK, the
Swedish National Board for Industrial and Technical Development, project P10499.
Work on this paper by Lydia Kavraki was supported by NSF CAREER Award IRI-
970228, NSF CISE SA1728-21122N and a Sloan Fellowship.

References

[1] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.
Choosing good distance metrics and local planners for probabilistic
roadmap methods. In Proc. IEEE Int. Conf. on Rob. & Aut., 1998.

[2] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo.
OBPRM: An obstacle-based PRM for 3D workspaces. In P. K.
Agarwal, L. E. Kavraki, and M. Mason, editors, Robotics: The Al-
gorithmic Perspective, pages 630-637. AK Peters, 1998.

[3] N.M. Amato and Y. Wu. A randomized roadmap method for path
and manipulation planning. In Proc. IEEE Int. Conf. on Rob. &
Awut., pages 113-120, 1996.

[4] J. Barraquand, L. E. Kavraki, J. C. Latombe, T.-Y. Li, R. Motwani,
and P. Raghavan. A random sampling scheme for path planning.
Int. J. of Robotics Research, 16(6):759-775, 1997.

[5] J. Barraquand and J.C. Latombe. Robot motion planning: A dis-
tributed representation approach. Int. J. of Rob. Research, 10:628—



[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

A Randomized Approach to Robot Path Planning 31

649, 1991.

R. Bohlin. Motion Planning for Industrial Robots. Licentiate thesis,
Chalmers University of Technology, 1999.

R. Bohlin and L.E. Kavraki. A lazy probabilistic roadmap planner
for single query path planning. Submitted to Int. J. on Robotics
Research.

R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In
Proc. IEEE Int. Conf. on Rob. & Aut., 2000.

V. Boor, M.H. Overmars, and F. van der Stappen. The Gaus-
sian sampling strategy for probabilistic roadmap planners. In Proc.
IEEE Int. Conf. on Rob. & Aut., pages 1018-1023, 1999.

L. Kavraki C. Holleman. A framework for using the workspace
medial axis in PRM planners. In Proc. IEEE Int. Conf. on Rob. &
Auwt., 2000.

S. Cameron. Enhancing GJK: Computing minimum distance and
penetration distanses between convex polyhedra. In Proc. IEEE
Int. Conf. on Rob. & Aut., pages 3112-3117, 1997.

J.F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

B. Glavina. Solving findpath by combination of goal-directed and
randomized search. In Proc. IEEFE Int. Conf. on Rob. & Aut., pages
1718-1723, 1990.

A. Gray. Tubes. Addison-Wesley, Redwood City, CA, 1990.

K. Gupta and A. P. del Pobil. Practical Motion Planning in
Robotics. John Wiley, West Sussex, England, 1998.

L. Han and N.M Amato. Kinematics-based probabilistic roadmap
method for closed chain systems. In Wokshop on the Algorithmic
Foundations of Robotics, 2000.

T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many
degrees of freedom - random reflections at C-space obstacles. In
Proc. IEEE Int. Conf. on Rob. & Aut., pages 3318-3323, 1994.

D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin.
On finding narrow passages with probabilistic roadmap planners.
In P. Agarwal, L. Kavraki, and M. Mason, editors, Robotics: The
Algorithmic Perspective, pages 141-154. A K Peters, 1998.

D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In Proc. IEEE Int. Conf. on Rob. & Aut.,
pages 2719-2726, 1997.



32

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

Y .K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Comp. Surveys, 24(3):219-291, 1992.

P. Isto. A two-level search algorithm for motion planning. In Proc.
IEEE Int. Conf. on Rob. & Aut., pages 2025-2031, 1997.

R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical
Analysis. Prentice Hall, New Jersey, 1998.

L.E. Kavraki, M.N. Kolountzakis, and J.C. Latombe. Analysis of
probabilistic roadmaps for path planning. In Proc. IEEE Int. Conf.
on Rob. & Aut., pages 3020-3025, 1996.

L.E. Kavraki and J.C. Latombe. Randomized preprocessing of con-
figuration space for fast path planning. In Proc. IEEE Int. Conf.
on Rob. & Aut., pages 2138-2145, 1994.

L.E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Prob-
abilistic roadmaps for fast path planning in high dimensional con-
figuration spaces. IEEE Tr. on Rob. & Aut., 12:566-580, 1996.

J.J Kuffner and J.C. Latombe. Fast synthetic vision, memory, and
learning models for virtual humans. In IEEE Computer Animation,
pages 118 —127, 1999.

J.C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

J.C. Latombe. Motion planning: A journey of robots, molecules,
digital actors, and other artifacts. Int. J. of Rob. Research,
18(11):1119-1128, 1999.

J.P. Laumond and T. Siméon. Notes on visibility roadmaps and

path planning. In Wokshop on the Algorithmic Foundations of
Robotics, 2000.

S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning.
In Proc. IEEE Int. Conf. on Rob. & Aut., pages 473-479, 1999.

S.M. LaValle, J.H. Yakey, and L.E. Kavraki. A proababilistic
roadmap approach for systems with closed kinematic chains. In
Proc. IEEE Int. Conf. on Rob. & Aut., pages 1671-1676, 1999.

M.C. Lin and J.F. Canny. A fast algorithm for incremental distance
computation. In Proc. IEEFE Int. Conf. on Rob. & Aut., pages 1008—
1014, 1991.

G.F. Luger and W.A. Stubblefield. Artificial intelligence and the
design of expert systems. Benjamin/Cummings, Redwood City, CA,
1989.

AH. Mishkin, J.C. Morrison, T.T. Nguyen, B.K. Cooper
H.W. Stone, and B.H. Wilcox. Experiences with operations and



[35]

[36]

[37]

[38]

[39]

[40]

[41]

A Randomized Approach to Robot Path Planning 33

autonomy of the mars pathfinder microrover. In IEEFE Aerospace
Conference, pages 337 —351, 1998.

C.L. Nielsen and L.E. Kavraki. A two level fuzzy PRM for manip-
ulation planning. Technical Report TR2000-365, Rice University,
2000.

M. Overmars. A random approach to motion planning. Technical
Report RUU-CS-92-32, Utrecht University, the Netherlands, 1992.

M. Overmars and P. Svestka. A probabilistic learning approach to
motion planning. In K.Y. Goldberg, D. Halperin, J.C. Latombe, and
R.H. Wilson, editors, Algorithmic Foundations of Robotics, pages
19-37. A K Peters, 1995.

J. Reif. Complexity of the mover’s problem and generalizations. In
Proc. 20th IEEE Symp. on Found. of Comp. Sci., pages 421-427,
1979.

F. Thomas and C. Torras. Interference detection between non-
convex polyhedra revisited with a practical aim. In Proc. IEEE
Int. Conf. on Rob. & Aut., 1994.

R.Z. Tombropoulos, J.R. Adler, and J.C. Latombe.
CARABEAMER: A treatment planner for a robotic radiosur-
gical system with general kinematics. Medical Image Analysis,
3(3):237-264, 1999.

S.A. Wilmarth, N.M. Amato, and P.F. Stiller. MAPRM: A prob-
abilistic roadmap planner with sampling on the medial axis of the
free space. In Proc. IEEE Int. Conf. on Rob. & Aut., pages 1024—
1031, 1999.



