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Abstract. In recent years an effort has been made to supplement tradi-
tional methods for drug discovery by computer-assisted “structure-based
design.” The structure-based approach involves (among other issues) rea-
soning about the geometry of drug molecules (or ligands) and about the
different spatial conformations that these molecules can attain. This is
a preliminary report on a set of tools that we are devising to assist the
chemist in the drug design process. We describe our work on the fol-
lowing three topics: (i) geometric data structures for representing and
manipulating molecules; (ii) conformational analysis—searching for low-
energy conformations; and (iii) pharmacophore identification—searching
for common features among different ligands that exhibit similar activity.

1 Introduction

Most existing pharmaceutical drugs were found either by chance observation or
by screening a large number of natural and synthetic substances [7]. In recent
years there has been a growing tendency to supplement the traditional methods
of drug discovery by structure-based design. The structure-based approach builds
on the improved understanding of the molecular interaction underlying diseases,
and attempts to predict the structure of a potentially active compound. The
prediction can then be used either to synthetically construct such a compound,
or to narrow down the screening process of existing substances. Refer to [3] for
a comprehensive survey and bibliography on the subject.

The fundamental assumption of structure-based drug design is that at the
molecular level, the key event leading to the desired effect of the drug is the
recognition and binding of a small molecule (the ligand) to a specific site on
a target macromolecule (the receptor) [3]. Tt is further assumed that at the
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binding site, the ligand must present steric and electrostatic complementarity to
the receiving pocket.

Depending on whether the structure of the receptor is known or not, two
types of structure-based approaches can be considered. If the structure of the
binding site is known, the process then centers on finding (or devising) a ligand
that will complement the binding site. Our work focuses on the case when the
structure of the receptor i1s not known. In this case, a possible scheme is to
start with a set of compounds whose structure is known, and which have been
observed to exhibit some level of activity with the target receptor molecule. The
goal then is to extract the common features of the active compounds. These
common features constitute a pharmacophore. With a pharmacophore at hand,
the chemist can look for other compounds having similar features, but which
may be more potent than any of the given compounds, or have other desirable
properties such as non-toxicity.

A major source of difficulty in structure-based drug design is the flexibility
of molecules to attain various conformations, namely different spatial configura-
tions of their atoms. Properly handling flexible ligands has been identified as a
major challenge in this field [22].

We have chosen to concentrate on the following topics where algorithmic
tools are needed to support the design process: (i) data structures for represent-
ing molecule geometry and molecular surfaces; (ii) conformational analysis —
searching for low-energy conformations; and, (iii) pharmacophore identification.
The first two components can be viewed as support tools for the pharmacophore
identification part. Although our current effort focuses on tools to support the
drug design process when the receptor structure is not known, some of the tools
that we are developing can also be used as building blocks to support the design
when the receptor structure is known.

There is an abundance of software tools for drug design [3, 4]. Many algo-
rithms with a geometric flavor have been proposed and implemented in this
domain. We believe that our work is innovative in the following aspects. In our
study of data structures for representing molecule geometry, we aim to develop
techniques that are efficient under conformation change, viz., techniques that
will allow for efficient dynamic update of the structure as the molecule con-
formation changes. We have devised and analyzed several models for efficient
dynamic maintenance of such structures, as discussed in Section 2. The goal of
conformational search, which is discussed in Section 3, is to produce low-energy
conformations of ligand molecules. These conformations constitute the input to
the pharmacophore identification procedure. Conformational search is compu-
tationally expensive and may take hours on high speed workstations [21]. We
aim for speed and efficiency of calculation, and are willing to find low-energy
conformations that are not necessarily energy minima. Finally, in the pharma-
cophore identification component, described in Section 4, we consider a set of
active molecules, each of which may be present in many low-energy conforma-
tions, and use inter-atom distances and molecular surface information to identify
common structural elements of these molecules. Our search for pharmacophores



is guided by user-specified size and accuracy requirements, and our software
allows for an interactive refinement of the solutions obtained.

2 Geometric Data Structures

A prevailing approach to modeling the geometry of static molecules is to repre-
sent each atom as a ball of fixed radius in a fixed placement relative to the other
atoms [25]. The radius assigned to each atom depends on the type of the atom.
There are various sets of recommended values for atom radii, and a prevailing
set 1s known as the van der Waals radii. In spite of its limitations, this model,
which we will refer to as the hard sphere model of a molecule, 1s widely used.

Various techniques in drug design use molecular surfaces. One type of molec-
ular surface is simply the outer boundary of the union of the balls (or spheres) in
the hard sphere model above. This type is often referred to as the van der Waals
surface. There are two closely related types of surfaces: the solvent accessible
surface [23] and Richard’s smooth analytical surface [28]. See also [9, 10, 11] and
the survey by Mezey [25] for an extensive discussion on molecular surfaces.

A basic question in the geometric manipulation of molecules is the following:
Given a hard sphere model of a molecule M and a query atom ¢, report the atoms
of M intersected by q. It has been shown [16] that for a molecule with n atoms,
an efficient data structure requiring O(n) storage space can be constructed such
that queries of the above type can be answered in O(1) time each, after O(n)
expected preprocessing time. This data structure was used [16] to obtain efficient
algorithms for constructing molecular surfaces and for computing the visibility
map of molecules.

In the next subsection we describe an implementation of the above algorithm
for computing the molecular surface. In Section 2.2 we extend the intersection
data structure to the dynamic case.

2.1 Molecular Surfaces — Construction and Visualization

We construct an analytic representation of van der Waals molecular surfaces (the
same procedure applies to solvent accessible surfaces as well). The representation
consists of the patches that each atom sphere contributes to the outer surface, as
well as the adjacency relations between patches on neighboring atoms that share
a common arc. The basic procedure in our implementation of the computation
of molecular surfaces is the construction of the subdivision (or arrangement) on
each atom sphere s induced by the circles of intersection of other atom spheres
with s. The arrangement is constructed incrementally, by adding one circle at a
time, and maintaining the trapezoidal decomposition® of the current arrangement.
See Figure 1 for an illustration.

® The trapezoidal decomposition is a refinement of the arrangement of the circles by
adding certain arcs of great circles through the poles. For more details on trapezoidal
decomposition, see e.g [26]. In our implementation, we extend such arcs only from
points of tangency of original circles with great circles through the poles.



Fig. 1. Partial trapezoidal decomposition of an arrangement of small circles on an atom
sphere.

We represent the arrangements of the circles using a quad-edge structure [13].
Once we obtain the arrangements for all atom spheres, we go on to construct
the (van der Waals, or solvent accessible) molecular surface. This is achieved
by adjusting the individual atom arrangements so as to retain only the faces in
those arrangements that contribute to the outer surface, and by updating the
edge information of edges that now border faces belonging to two different atom
spheres (see [16] for details).

The arrangements on the spheres are used to compute the molecular surface
area and the (possibly null) area contributed by each atom to the outer sur-
face, as well as for graphic display of the intersection pattern of each atom with
its neighbors (Figure 1). The information about area contribution of individ-
ual atoms is used in the pharmacophore identification module described below.
Besides computing the outer surface, the program computes internal boundary
components which bound voids (see, e.g., [11]) and outputs their surface area as
well.

The implementation provides extensive facilities for interaction. It displays
the molecule and the individual atom arrangements graphically, and also allows
for re-coloring of the atoms according to several parameters such as the level of
contribution to the outer surface. The edges of the arrangement on each atom
sphere are colored to distinguish between the contribution of the atom to the
outer molecular surface and to each void (if any). The program also provides
various statistics on the data structures it uses and allows for experimenting
with and fine-tuning certain parameters that control these structures.

2.2 Dynamic Maintenance

We can model the flexibility of a molecule to attain different conformations as
if the atoms were rigid links of a robot linkage, and the bonds between some
of the atoms are rotational (or rotatable) joints (see Section 3 for more details



on this simplified model). We describe these kinematic constraints by a graph
where each node corresponds to an atom sphere, and an edge between nodes
describes a constraint. An edge can be either rigid — when there is a fixed
relative displacement between the atoms that it connects, or rotatable — when
there is a degree of freedom of rotation around a fixed line between the two
atoms.

Suppose that we are given a sequence of update requests that are aimed at
changing the conformation of the molecule. This is done by giving a sequence
of joint angles to which we need to update the rotatable bonds. The sequence
of updates is interleaved with intersection queries of the form: does a given
query sphere intersect any of the atom spheres in the molecule at its current
conformation? We require a strategy for maintaining a data structure which
processes a sequence of updates and queries in optimal time, where the processing
algorithm has the freedom to break or merge substructures.

In [15] we study several models of dynamic maintenance of such kinematic
structures, and devise maintenance algorithms for them. We give a worst-case
optimal strategy for the case where the molecule graph is a tree. The key idea
behind this i1s that of a dalanced decomposition of the tree into subtrees such that
the number of subtrees (which corresponds to the cost of a query) is roughly the
same as the size of each subtree (which corresponds to the worst case cost of
an arbitrary update). We describe an efficient algorithm for constructing such a
balanced decomposition. We also show that obtaining the optimal solution for a
given sequence of updates and queries, even when the molecule graph is a path,
is an NP-hard problem and we present approximation algorithms for this case.

3 Conformational Search

Searching the conformational space of small ligands is an important operation in
the process of pharmaceutical drug design [22]. Given a function that computes
the energy of the molecule, the goal of the search is to produce low-energy
conformations that are geometrically distinct. These conformations can provide
the input to a pharmacophore generation procedure, or can be used to screen
large databases of protein molecules for possible docking receptors.

When conformational search is conducted, the prevailing practice is to con-
sider only the torsional degrees of freedom of the molecule (see Figure 2 for an
example). Other degrees of freedom, such as bond lengths between atoms or
bond angles between consecutive bonds, are often ignored since their variation
does not drastically change the molecular conformation. Another widely used
approximation is to consider that the molecule 1s in vacuum. In this case, the
energy of the molecule can be computed by empirical force-fields which con-
sider only intramolecular quantities. The definition of such fields has been the
result of intensive research [21]. Typically they have terms that involve pairs,
triplets, and quadruples of bonded atoms, as well as pairs of distant non-bonded
atoms. In reality, however, the conformation of a molecule is influenced both by
intramolecular and intermolecular forces. Our techniques require as input a pro-
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Fig. 2. The molecule of valine with its torsional degrees of freedom. A ball indicates
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an atom center, and a line segment indicates a bond between two atoms.

cedure that computes the energy of a molecule and will work if this procedure
models the molecule in solution, or takes into account an external force field.

Conformational analysis is a very hard search problem when the molecule un-
der consideration has more than 5 degrees of freedom. For a comprehensive sur-
vey of previous methods see [8, 21, 30]. During search, emphasis is placed on gen-
erating geometrically different conformations of a molecule within a user-defined
energy interval. The underlying assumption is that one of these conformations
will be adopted inside a receptor cavity. Selective generation of conformations
with certain properties may also be desired. For example, if a pharmacophore is
known, one may want to find low-energy conformations that retain the features
of the pharmacophore at their relative positions. We describe below a method for
generating low-energy conformations of a molecule, and our preliminary efforts
to efficiently organize the resulting conformations in clusters and provide input
for our pharmacophore generation procedure.

3.1 General Framework

Inspired by our success with probabilistic techniques for robot motion planning
[17], we have implemented a search procedure which randomly samples the con-
formational space of small molecules. The energy of the molecules subjected to
conformational search is computed by the Tripos Force Field [32]. Our method
is divided into three steps: generation of random conformations, minimization of
these conformations, and grouping or clustering of the minimized conformations.

Generation of conformations. During this step, a large number of confor-
mations, frequently tens of thousands, are generated at random over the confor-
mational space of the molecule. In contrast with previous search methods that
discretize each torsional angle, we obtain a random conformation by selecting
each torsional degree of freedom uniformly from its allowed range. However, if
information is available for the preferred values of a particular torsion angle
(such information has been collected from crystallographic databases [20]), then
it is easy to select the value of this torsion angle according to a distribution



that reflects the above information. The resulting structure is stored only if 1t
avoids self-collisions which may result from intersections of the hard spheres of
non-bonded atoms.

Minimization. An efficient minimizer [5, 29] is used to obtain conformations
that are at local energy minima. It is important to note that minimization is the
most time-consuming step during conformational search, and that its efficiency
is crucial for the performance of the search. A large part of the running time
is spent towards the end of the procedure, when the process tries to meet cer-
tain user-defined stopping criteria. We relax these criteria to achieve significant
reductions in the running time at the expense of accepting conformations that
are not at local energy minima. However, experiments show that conformations
very close to a local minimum usually have similar geometries. These confor-
mations are later grouped by our implementation in clusters as explained in
the next paragraph. For the purposes of most applications (e.g., pharmacophore
generation) only one conformation per cluster is retained. Hence, no relevant in-
formation is likely to be lost by avoiding the full minimization of conformations
that belong to the same cluster. In the framework of conformation generation
and minimization, the work described in Section 2.2 may prove beneficial in re-
ducing the time spent on collision checking and on the calculation of various
energy function terms.
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Fig. 3. Two clusters of an actual drug molecule.

Distinct geometric conformations. Interpreting a set of a few thousands of
conformations is challenging and can benefit from extensive research in the area
of clustering [18]. Currently, our system partitions conformations into clusters
by using an easily-computable measure of distance between conformations. In
particular, three distinct atoms aq, as, ag are first selected in the molecule. The



distance of two conformations is defined as the sum of the Euclidean distances of
their corresponding atoms, after identifying atom aq, direction ajas, and plane
aiasag in the two conformations. Clustering is performed by placing a given
conformation in an existing cluster if its distance from the “center” of that
cluster is less than a predefined value. If no such cluster i1s found, a new cluster
is initiated. The center of a cluster can be the conformation with the lowest
energy in the cluster. Despite its simplicity, this procedure seems to perform
well in practice when a few thousands of conformations are involved. Examples
of clusters for a molecule with 11 degrees of freedom are shown in Figure 3. We
plan to investigate further the relationship between cluster generation and the
extent to which minimization should be performed. Additionally, randomization
and hashing techniques may reduce the complexity of clustering and permit its
efficient use with very large numbers of conformations.

4 Pharmacophore Identification

In the literature, pharmacophore identification techniques model a molecule ei-
ther as a graph (where atoms are vertices and bonds are edges) [31], or as a set
of points in 3-dimensional space [6]. The second approach is often justified by
arguing that pharmacophores tend to be non-local — bond information seems
to have less of an influence on ligand-receptor binding than other properties
such as hydrophobicity, hydrogen bonding, and electrostatic interactions (e.g.,
see [12]). Therefore, we model a molecule as a set of labeled points in three di-
mensions, where each point represents the center of an atom. In fact we expand
each point into a small sphere of radius € centered at that point, where ¢ repre-
sents uncertainty in locating atoms. Labeling allows us to generalize the notion
of compatibility between atoms, so that we can take into consideration other
structural /chemical properties of the atoms without having to change our algo-
rithms. One type of labeling that we use is the surface area contributed by an
atom to the outer molecular surface (see Section 2.1).

Since each molecule may exist in one of many low-energy conformations, the
representation of a molecule consists of a collection of one or more point sets, each
corresponding to one such conformation. The problem now is to determine one
or more point sets that are congruent to a subset of some conformation in most
of the molecules, where the only transformations permitted are translations and
rotations. Note that allowing molecules to have multiple conformations makes
the problem much more difficult, because now for any pair of molecules, we
may potentially have to compare each possible pair of conformations in these
molecules to determine even one pharmacophore.

It is known that if we restrict each molecule to one conformation, finding
the largest such subset is NP-hard; from the point of approximate solutions,
it is known to be hard to approximate [1] and only weak positive results are
known [19]. There exist polynomial-time algorithms for the problem if we con-
sider only two point sets [2], and these could be used to build algorithms over
a larger number of point sets; however, these solutions are inefficient. In the



next subsection, we describe an implementation based on a fast heuristic to
determine pharmacophores between two point sets. Subsequently, we outline a
scheme whereby such pharmacophores could be used to reconstruct a solution
for many point sets efficiently.

4.1 The Two-Set Problem

Our implementation uses the following observation: if we can identify three pairs
of atoms (one from each of the two conformations) that belong to a pharma-
cophore, then we can simply compute a transformation from the first triplet to
the second. This transformation can be used to transform the first conformation,
and a nearest-neighbor search will then yield the rest of the pharmacophore. We
are not interested in very small pharmacophores, so we assume that any common
substructure is not too small: specifically, for some constant a < 1, there exists
a common substructure P in conformations C1, Cs s.t.

|P| > amin(|Cy], |Ca]).

This 1s a reasonable assumption because conformation sizes are typically of
the order of 30-50 atoms, and non-trivial pharmacophores are of the order of
5-15 atoms. Therefore, a can vary between 0.1 and 0.3.

Now, we can randomly sample triplets of points from the smaller conforma-
tion. If we store distances between pairs of conformation atoms in a hash table,
we can probe this table with the inter-point distances of the given triplet to
determine triplets in the second conformation congruent to it. Then, as noted
above, computing the transformation from one triplet to the other (if one exists)
will yield a common substructure. We do this procedure repeatedly, until we
obtain a substructure that satisfies the minimum size requirement.

It is easy to see that the probability of a random triplet belonging to a
pharmacophore is at least a®. Therefore, O(%) iterations will yield the phar-
macophore with high probability. In practice, we run the program in Monte Carlo
mode — if a large invariant is not detected within these number of iterations, the
program halts, reporting failure.

Our implementation has a graphic interface to display the results of the
search. Various tolerances, such as errors in point locations, errors in distance
measurements, and minimum subset sizes can be specified. Multiple solutions can
be displayed simultaneously, and the user can change parameters and view the
results in real time. It should be noted that we use actual sets of drug molecules
with known pharmacophoric subsets, and the above procedure is quite effective
in determining the correct solution (as detected by chemists).

4.2 Extension to Multiple Molecules

Previous attacks on the problem often use a clique-finding approach similar
to the above to determine common subsets. This is then extended to multiple
molecules in a natural way, where one molecule is compared with each of the
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rest simultaneously, and then the procedure is iterated [24]. This approach is
simple, but computationally expensive, and cannot handle situations where a
pharmacophore may exist in most, but not all, molecules. It should also be
noted that these methods do not address the case where molecules can be in one
of many conformations.

In general, it is easier to determine whether a given substructure exists in a
conformation than to search for some common substructure that exists in two
conformations. Therefore, our approach in the case of multiple molecules uses
two primitives:

P1 that takes two sets of conformations and produces a set of common sub-
structures from them, and

P2 that takes such a set of substructures, and another molecule, and filters the
invariants through this molecule, retaining only those that are contained in
it.

One simple strategy would choose two molecules arbitrarily, apply P1 on
them, and use P2 repeatedly on the result and the rest of the molecules. Another
possible strategy would be to view common substructures as sets of pseudo-
conformations, and extend P1 to process such pseudo-conformations as well.
Currently, we are investigating the efficacy of such strategies on various actual
sets of drug molecules.

It is important to represent molecules and invariant groups compactly, to
make P1 and P2 more efficient. To do this, we use techniques similar in spirit
to geometric hashing [33], a technique used for pattern recognition in computer
vision, and recently also in computational biology [27]. We hash all the confor-
mations of all the molecules into a table, using a hash function of a geometric
nature defined on pairs or triplets of atoms, and taking all such subsets. With
every such table entry, we associate the conformation which contributed to a hit
on it. Now, if we hash the pharmacophores in a similar fashion, we can identify
which conformations are hit frequently, and so can deduce which molecules are
likely to possess at least one conformation containing the pharmacophore.
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