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Abstract

This paper describes a randomized approach for finding invariants in a set of flexible and chemi-
cally distinct ligands (drug molecules) that underlies an integrated software system called RAPID
currently under development. An invariant is a collection of features embedded in R® which is
present in one or more of the possible low-energy conformations of each ligand. Such invariants are
called pharmacophores and contain the parts of the ligand that are primarily responsible for its
binding with a receptor. The identification of pharmacophores is crucial in drug design since fre-
quently the structure of targeted receptor is unknown but a number of molecules that interact with
it have been discovered by experiments. In these cases the pharmacophore is used as a template
for building more effective drugs. It is expected that our techniques and results will prove useful in
other applications such as molecular database screening and comparative molecular field analysis.

1 Introduction

Computational chemists working in the area of structure-based drug design consider both chem-
ical and geometric properties of the interacting molecules when developing new pharmaceutical
drugs [4]. The underlying assumption is that drug activity, or pharmacophoric activity, is obtained
through the molecular recognition and binding of one molecule (ligand) to a pocket of another,
usually larger, molecule (receptor). This assumption is supported by experimental results showing

molecules with geometric and chemical complementarity in their binding conformations [6].

When the three-dimensional structure of the receptor is known, docking methods [4] exploit both
the geometric and the chemical information available. However, the geometric structures of rela-
tively few molecules have been obtained via X-ray crystallography or NMR techniques. In an effort
to develop pharmaceutical drugs for receptors whose structure is unknown, chemists start with
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Fig. 1. (a) space-filling, (b) stick, and (c) set-of-features models of ITTMN

a collection of ligands that have been experimentally discovered to interact with the considered
receptor [5,19]. By examining the chemical properties and the possible shapes of these ligands, they
try to identify a set of features embedded in R* that is contained in some active conformation of
each (or most) of the ligands. This is called the pharmacophore and it is considered responsible
for the observed drug activity. The features of the pharmacophore interact with features of the
receptor, while the rest of the ligand acts as a scaffold. Once a pharmacophore has been isolated,
it can be used to further improve the activity of a pharmaceutical drug [4].

We consider the following problem: Given a set of ligands that interact with the same receptor, find
geometric invariants of these ligands, i.e., a set of features embedded in R> that is present in one
or more valid conformations of each of the ligands. We refer to this problem as the pharmacophore
identification problem. Its solution requires dealing efficiently with large amounts of spatial data
and shape information. Ligand molecules are very flexible and can assume many distinct potentially
valid conformations. A valid conformation is a rigid spatial realization of the atoms of a molecule
whose energy is below a predefined threshold [6]. Besides providing templates for drug design, ge-
ometric invariant identification is useful in formulating database queries for retrieving functionally
equivalent, but structurally novel, molecules from molecular databases [4] and in suggesting align-
ments of molecules for input to CoMFA (Comparative Molecular Field Analysis) and other 3D
QSAR (Quantitative Structure-Activity Relationship) methods [5].

In this paper we describe our efforts to prototype an integrated software system, called RAPID
(RAndomized Pharmacophore Identification for Drug design) for addressing the pharmacophore
identification problem. We present briefly the overall structure of RAPID and outline related work in
Section 2. The two main modules of RAPID, conformational search and identification of invariants,
are described in Sections 3 and 4. In Section 5 we report preliminary experimental results and in
Section 6, we conclude with a discussion of some open questions that merit further consideration.

2 Overview of RAPID and Related Work

RAPID tries to identify geometric invariants among a collection of small ligands like the molecule
shown in Figure 1. This molecule is called 1TMN and it is an inhibitor of thermolysin. Figure 1(a)
shows the space filling model of 1'TMN, by drawing a Van der Walls sphere [4] around each atom

center. Figure 1(b) shows the corresponding stick model in which only chemical bonds are drawn.



The degrees of freedom of ligands include bond lengths, bond angles (angles between two consecutive
bonds), and dihedral or torsional angles (angles formed by the first and third of three consecutive
bonds, viewed along the axis of the second bond). In practice, only the torsional degrees of freedom
are considered since these are the ones that exhibit large variations in their values. Figure 1(c) shows
the conformation of 1TMN of Figure 1(a) as a set of points in ®”*. These points may represent atom
centers or groups of atoms aggregated to one point endowed with a feature common to all these
atoms (e.g., a rigid benzene ring) [19]. We assume that once a conformation is given, one can

automatically transform it to a unique collection of points.

In RAPID, the identification of geometric invariants in a collection of flexible ligands denoted by
M = {My, My, ..., My} is treated as a two-stage process addressing the two following problems:

Problem 1 (Conformational Search) Given a collection of ligands M = {My, My, ..., My},
the degrees of freedom for each of them, and an energy function FE, find for each M;, a set of
conformations C(M;) = {Ci1,Ciz, ..., Ci, }, such that E(C;;) < THRESHOLD and d(Cyj,Cy) >
TOLERANCE forl # j and 1 < j,l < k;, where THRESHOLD and TOLERANCE are pre-specified

values and d(-,-) is a distance function.

Problem 2 (Invariant Identification) Given a collection of ligands M = {My, My, ..., My}
where each M; has a set of conformations C(M;) = {Ci,Cia,...,Ci,}, determine a set of labeled
points S in R with the property that for all i € {1,...,N}, there exists some C;; € C(M;) such
that S is congruent to some subset of C;;. A solution S, if it exists, is called an invariant of M.

In practice, the input may contain ligands that do not contain the pharmacophore. This requires
us to consider a relaxation of Problem 2 above, where a geometric invariant need only be present
in conformations of some K of the N molecules. Although at this stage the two modules of RAPID
work independently, we plan to support their interaction as the system develops. A third module
of RAPID, currently under development, involves the computation of molecular surfaces [9,13].

Related Work We offer below a brief overview of related work. The interested reader can find
an extensive survey in [10,16]. As far as conformational search is concerned, both systematic and
randomized techniques are being investigated [18]. Randomized methods obtain conformations by
applying random increments to the torsional DOF of the molecule starting from a user-specified
initial conformation [11] or from a previously found low-energy conformation [8]. Recent articles,
which attempt to compare different methods, emphasize the superior quality of the results obtained
with randomized techniques [11].

Invariant identification is related to the well-studied problem in geometric optimization of finding
common point sets [1,17]. Determining the congruence of two point-sets in R is tractable [1] in the
absence of complications such as noise. However, invariant identification is more closely related to
the problem of identifying the largest common point set (LCP). Unfortunately, the LCP problem
turns out to exceedingly difficult; in fact, even for m collections of n points on the real line, the
LLCP cannot be approximated to within an n® factor unless P = NP, and only weak positive
results are known [17]. In computational chemistry, the most popular algorithms for invariant
identification are based on clique-detection. For instance, DISCO [19] initially considers a pair of
conformations belonging to different molecules and constructs a graph whose cliques correspond to



candidate pharmacophores. Although maximum clique detection is NP-hard, the algorithm seems
to work well in practice [19]. The approach can be generalized to n conformations by choosing a
reference conformation and comparing it with the other n — 1 conformations, but it can lead to
a combinatorial explosion in the operations performed [5]. Other techniques for pharmacophore
identification include expansion of small invariants, hashing techniques, and genetic algorithms
(see [16] for a survey).

3 Conformational Search

Our algorithm proceeds as follows. Initially a large number of conformations are generated at
random. In contrast with previous randomized search methods, we obtain a random conformation
by selecting each degree of freedom from its allowed range according to a user-specified distribution.
This distribution is frequently the uniform distribution. However, if some a priori information is
available about the preferred values of a particular degree of freedom, then the corresponding values
are selected according to a distribution that reflects the a priori information (e.g., Gaussian). An
efficient minimizer [7] is then used to obtain conformations at local energy minima. Minimization

is the most time-consuming step, so we have carefully optimized this procedure.

To obtain a representative set of conformations from our sample, we partition it into sets that reflect
geometric similarity as captured by the distance measure DRMS. We define DRMS(C;,C;) as the
square root of the mean of the squared distances of the corresponding atoms of C; and Cj, after C;
is transformed to C';. This transformation is computed using a basis of three predefined atoms ay,
az, and as [3]. The clustering algorithm used is described in Gonzalez [12]. It is an approximation
algorithm that runs in time O(nk), where n are the conformations to be clustered and k is the
number of clusters, and guarantees a solution within twice the optimal value. The centers of the

clusters are returned as representatives of the possible conformations of the molecule.

Our experience with randomized techniques for searching high-dimensional spaces has shown that
randomized exploration is superior to systematic exploration when the shape of the underlying space
is irregular [15]. The same observation holds for conformational search: a systematic procedure has
a higher chance of missing the irregularly shaped basins of attraction of the energy landscape of the
molecule (see also [11]). This has been our main motivation for the development of the randomized
conformational search procedure described above.

4 Identification of Invariants

The set of cluster centers, denoted by C(M) = C(M;)U...UC(Mp) is the input for the invariant
identification module. Each conformation in C(M) is now represented as a set of labeled points
in R (see Section 2). We wish to determine a structure S that is congruent to a substructure of
some conformation in every molecule. The congruence relation is with respect to 3-D rotations and
translations that ensure equality of labels. Our formulation of the invariant identification problem
assumes noise-free data, specifically that all point positions are known exactly. In practice, atom
positions are fuzzy and it may not be possible to align them exactly. Therefore, we adopt the



convention that two points p; and p, are said to match when |p; — pa| < €, where € is the point
location error. Similarly, two triangles are said to be congruent if each point in the first triangle is
within distance ¢ of the corresponding point in the second.

As mentioned before, the invariant identification problem is a variant of the largest common point
set problem (LCP)in d dimensions: Given s point sets Py, Py, ..., Ps in R, determine the point set
of maximum cardinality congruent to some subset of each point set. For convenience, we assume
that each point set P; has cardinality exactly n. For arbitrary s and d, LCP is hard to approximate
within a factor of n¢, for some ¢ > 0. In the sequel, we consider the following variant of LCP, called
LCP-a: determine a point set .S of size |S| > an congruent to some subset of each P;,1 < i < s.
The motivation for focusing on this subproblem is that it more accurately captures our primary
application, where pharmacophores are desired to have a certain minimum size.

4.1 Phase 1: Pairwise Matching

In this section, we focus on the invariant identification problem for two point sets, denoted by
MATCH. This problem has been studied extensively in the literature [20]. For general «, the best
known algorithms were obtained in [1]. These have a worst-case running time of O(n*) for unknown
a, and O(n?%/a?) (randomized) when « is known for 3D. In 2D, the corresponding bounds obtained
are O(n*?) and O(n%?%/a). However, these bounds apply only to the noise-free model of point sets.
The noisy version of the problem was considered in [2] yielding an O(n®) algorithm in 2D. (Refer
to [14] for recent results in the noisy model.)

We now describe two random-sampling schemes for solving LCP-a on noisy data. Qur analysis
(presented in [10]) assumes that the data is exact. We use the notation g(n) = O(f(n)), where
f and g are functions, to indicate that g(n) = O(f(n)logn). Also note that in three dimensions,
a unique transformation 7" (upto reflection) between two point sets P, and P, is determined by
matching three points p, ¢, r in P, with three points s, ¢, u in Py.

BASIC-SAMPLE: For some constant ¢, perform (clogn)/a? iterations of the following process:
sample a triplet of points <py, ps, p3> randomly from P;; determine three points in P, congruent
to this set; compute the resulting induced transformation and determine the number of points in
P, matching corresponding points in FP%; and, if this number exceeds an, declare SUCCESS.

Theorem 1 Given a common subset S of size |S| > an, the probability that BASIC-SAMPLE
fails to declare SUCCESS is O(1/n).

Theorem 2 BASIC-SAMPLE runs in time O(n*®/a?) using space O(n?).

Run-time profiling revealed that BASIC-SAMPLE examines many spurious triples, i.e. tuples that

do not yield a large invariant. We propose the following modification of the random sampling
procedure to handle this problem.

PARTITION-SAMPLE: For some constant ¢, perform clogn iterations of the following pro-
cess: randomly select two subsets A and B of size 1/a from Pp; also select a subset C' of size 1/«

from P,; store all distances d(p, ¢), for all p € C and ¢ € P> — C, in a hash table; for every triangle
(a,b,p) with @ € A,b€ B, and p € P1 — (AU B), probe for d(p,a) and d(p, b) in the hash table to



determine all matching triplets (¢, p1, p2) with ¢ € C and py, py € P, — C; finally, as before, if the
resulting transformation induces a match of more than an points, declare SUCCESS.

Theorem 3 Given a common subset S of size |S| > an, the probability that PARTITION-
SAMPLE fails to declare SUCCESS is O(1/n).

Theorem 4 PARTITION-SAMPLE runs in time O(n%*/a3) using space O(n/a?).

Although the asymptotic running time of PARTITION-SAMPLE is worse than that of BASIC-
SAMPLE, experiments (see Section 5) reveal that PARTITION-SAMPLE consistently outperforms
BASIC-SAMPLE, generating far fewer spurious triples with an improved degree of success. Addi-
tionally, experimental results suggest that both predicted running times are overly pessimistic.

There are two issues which deserve further discussion. The first concerns the elimination of redun-
dant solutions, that is solutions satisfying a containment relationship with respect to each other.
Given invariants 57 and S5, we need to check if S; C S5 by invoking MATCH on these two sets
with & = 1. The second issue concerns the inaccuracies present when computing the transforma-
tion that overlaps 3 points in the two point-sets. A source of problems is the fact that our point
locations are noisy and this transformation may not be unique. We employ a number of heuristics
to compensate for this. For example, we determine a seed transformation 7" and then sample three
random pairs from the set of correspondences that 1" induces and use these pairs to construct a new
transformation. Clearly, in a perfect world, we will obtain 7" again. However, given the inaccuracies
in point location, it turns out that some choices of triplets may yield more correspondences than
before.

4.2 Phase 2: Multiple Matching

Candidate solutions obtained from Phase 1 are tested against the remaining molecules to determine
the invariant. Each MATCH call operates on two conformations. Since each molecule is represented
by many conformations, we extend MATCH to two molecules by doing all pair-wise matches between
the sets of conformations. Note that comparing a candidate solution against a new conformation
may result in 0,1, or many solutions, since the solution may decompose into smaller pieces on

comparison.

There are various strategies one could use to process multiple molecules. A simple strategy that we
implement performs a linear merge. We take each solution and compare it with the next molecule.
We do this for all current solutions, concatenate and prune the results, and repeat with a new
molecule. In addition to this, we may wish to find an invariant that does not exist in all the
molecules, but in some fixed number of them. We use a marking scheme (described in [10]) to
keep track of the number of times an invariant fails to match against a molecule, and reject those
invariants which exceed the maximum allowed number of failures.

5 Experimental Results

This section reports experimental results for the algorithms described above. All reported timings
are on an SGI Indigo2 with a 175 MHz MIPS R8000 processor and 384MB RAM. Code was written
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Fig. 2. (a) 1TLP, 4TMN, 5TMN, and 6TMN are inhibitors of thermolysin, (b) the molecules
overlaped in their active conformation

Fig. 3. Different clusters of 1TLP

in C/C++, and compiled using SGI CC. In Figure 2, we show four different inhibitors of the
protease thermolysin. These molecules fit into the same cavity of thermolysin and by their presence
inhibit the activity associated with that cavity. This example was chosen because all the inhibitors
have been crystallized with thermolysin and their active conformations are known and recorded in
the PDB database [4]. Note that 1TLP has 69 atoms and 10 torsional degrees of freedom, 4TMN
has 68 atoms and 15 degrees of freedom, 5TMN has 64 atoms and 13 degrees of freedom, and 6TMN
has 63 atoms and 12 degrees of freedom.

Conformational Search. FEach of the molecules in Figure 2(a) was run through our confor-
mational search software. A cutoff value of 20 Kcals/mol was used for the energy of the valid
conformations. The clustering algorithm terminated when the average distance of each of the con-
formations from the center of its assigned cluster dropped below a THRESHOLD of 1.2 A. It took
9.4h, 34.1h, 10.4h, and 9.2h to create 10,000 conformations of 1TLP, 4TMN, 5TMN, 6 TMN corre-
spondingly. The running times for clustering were 5.2m, 18.2m, 15.2m, and 14.1m, producing 128,
253, 241, and 219 clusters. A few clusters of 1TLP are shown in Figure 3. The conformations in
a single cluster are overlaid to illustrate that they are close to each other and this justifies using
the center of a cluster as its representative. As mentioned in Section 3, an important problem in
conformational search is to decide how many conformations to produce. At this stage, this number
is determined experimentally: we stop producing new conformations when these do not increase
the overall number of clusters significantly.

Identification of Invariants. An experimental comparison of BASIC-SAMPLE and PARTITION-
SAMPLE reveals that PARTITION-SAMPLE works significantly better than BASIC-SAMPLE;,

and a second suite of tests provides some explanation for this. For our input molecules, the “solu-
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Fig. 4. Comparison of BASIC-SAMPLE and PARTITION-SAMPLE

tion” consists of the overlapping portions of the molecules when aligned as shown in Figure 2(b).
This is the lower right handside T-shaped portion of this diagram. The entire invariant consists of
roughly 7 atoms and an additional 7 atoms of “scaffolding,” or connecting atoms with no phar-
macophore functionality. In all cases, we required the invariant to be present in all of the four
molecules.

We run our search procedure on sets consisting of 1, 11, and 21 conformations including the active
conformation. The search values for ¢, §, and « were set experimentally to 1.3, 0.5, and 0.3. the cor-
responding prune values are 3.5, 1, and 1. We present in Figure 4 the results of this test. In all cases,
the quality of solutions (in terms of the largest solution found) is comparable, and PARTITION-
SAMPLE consistently runs significantly faster than BASIC-SAMPLE. When the number of con-
formations increases, more invariants are produced because some of the added conformations have
additional “scaffolding” which also could be matched.

As observed earlier, a formal analysis of the algorithms does not explain the marked difference in
performance. Our second suite of experiments attempts to investigate this discrepancy. For this set
of tests, we used the four molecules from the above examples, but with only one conformation each
(so as to maximize the influence of the basic sampling algorithm). We vary a between 10 and 35
(in intervals of 5) and fix (¢,8) = (1.3,0.5). The parameters that control the running time of the
sampling algorithm are (a) the number of candidate triangle-triangle pairs examined (A.), (b) the
number of valid transformations produced (A;), and (c) the number of valid transformations that

yield solutions above the minimum required size (A,,).

An experimental evaluation (shown in [10]), reveals a strong correlation between the running time
of the algorithm and A., and a much weaker correlation between the running time and A,,. Our
most intersting experiment is the plot of A, against « for the two algorithms in Figure 5. Notice that
BASIC-SAMPLE examines a significantly larger number of such pairs than PARTITION-SAMPLE
(A, for PARTITION-SAMPLE is scaled by 10 on the graph for ease of reading). However, most of
the work that BASIC-SAMPLE performs is wasted effort, as seen in Figure 5, which explains the
experimentally good performance of PARTITION-SAMPLE.
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6 Discussion

Our goal is to optimize the modules of RAPID to perform experiments that involve 5-20 ligands and
a large number of conformations per ligand. To improve conformational search we are investigating
better energy minimization algorithms and better incremental clustering techniques. For invariant
indentification we are working towards improving our MATCH procedure and understanding the

combinatorics of matching noisy point sets in 2D and 3D.
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