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Asynchronous Distributed Motion Planning with
Safety Guarantees under Second-Order Dynamics

Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

Abstract As robots become more versatile, they are increasingly ddonoper-
ate together in the same environment where they must cadedtheir motion in

a distributed manner. Such operation does not presentgmsbif the motion is
guasi-static and collisions can be easily avoided. Howavieen the robots follow
second-order dynamics, the problem becomes challengeg fev a known envi-
ronment. The setup in this work considers that each robdamspts own trajec-
tory for the next replanning cycle. The planning processtrguarantee the robot’s
safety by ensuring collision-free paths for the considgeribd and by not bringing
the robot to states where collisions cannot be avoided irfutuge. This problem
can be addressed through communication among the roboispbaomes compli-
cated when the replanning cycles of thé&elient robots are not synchronized and
the robots make planning decisions dtelient time instants. This paper shows how
to guarantee the safe operation of multiple communicatawpisd-order vehicles,
whose replanning cycles do not coincide, through an aspmctus, distributed mo-
tion planning framework. The method is evaluated througtusations, where each
robot is simulated on a fierent processor and communicates with its neighbors
through message passing. The simulations confirm that fireagh provides safety
in scenarios with up to 48 robots with second-order dynamiesvironments with
obstacles, where collisions occur often without a safetyngwork.

1 Introduction

This paper considers multiple autonomous robots with miwrat dynamics operat-
ing in a static environment. The robots try to reach theiiviadial goals without col-
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Fig. 1 A sample run in the fiice environment (left to right). Links show communicating robots.

lisions. Such scenarios are becoming increasingly intiegeg-or instance, consider
the case of vehicles moving in a parking lot or going throudiusy intersection,
or unmanned aerial vehicles that carry out complex mansu¥éese examples in-
volve second-order systems, which cannot stop instantestyeand must respect
limits in the second-order derivatives of their state patars. For such systems,
collisions with other robots or obstacles cannot be easiydzd.

Real applications also require the solution of such probléma decentralized
manner. This work imposes a requirement for a decentraiakdion and considers
robots that replan their trajectories on the fly. Replanmithgwvs robots to consider
multiple alternative trajectories during each cycle am/tes flexibility in chang-
ing environments. To coordinate the robots, this work zg#i communication. A
planning algorithm makes use of information collected tigto communication to
avoid collisions for the next cycle and ensure that robotshestates from where
collisions can be avoided in the future. The duration of theleis the same for
all robots, but the robots are not synchronized. Hence camwation of plans can
happen at any point and the robots need to operate safelgiprdsence of par-
tial information about the plans of their neighbors. An adyenous, distributed
framework is developed that guarantees the safety of atitsah this setup.
Background Safety issues for dynamical systems were first studied maaysy
ago. Collision-free states that inevitably lead to cadiis have been referred as
Obstacle Shadows [24], Regions of Inevitable Collisior] @0nevitable Collision
States {CS) [13]. A study onICS resulted in conservative approximations [13] and
genericICS checkers [21]. It also provideRicriteria for motion safety: a robot must
(i) consider its dynamics, (ii) the environment’s futurehbeior, and (iii) reason
over infinite-time horizon [12]. This line of research, hawe did not deal with
coordinating robots as the current paper does.

Reactive methods, such as the Dynamic Window Approach [fd]\é&elocity
Obstacles [10], can enable a robot to avoid collisions fdmamwn on dynamic en-
vironments. Many existing reactive planners, however, dbsatisfy the criteria
for motion safety [12, 21]. Path deformation techniques jgota a flexible path,
adapted on the fly to avoid moving obstacles [18, 27], but dodeal with ICS.
Reciprocal Velocity ObstacleRY0s) [4] involve multiple agents which simulta-
neously avoid one another without communication but do mai get withICS.
A related control-based approach [17] deals with secodé+amodels of a planar
unicycle but does not provide guarantees in the presendastéces.
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In contrast to reactive approaches, this paper focusgdamming safe paths.
Planning has a longer horizon so it does not get stuck in naréas easily and
extends to high degrees-of-freedom systems. Reasoning aafety during plan-
ning focuses the search on the safe part of the state spattés work planning
is achieved using a sampling-based tree planner [20, 1Rl@natives include,
among others, navigation functions [8] and lattice-baggmi@aches [23].

Braking maneuvers have been showfiisient in providing safety in static envi-
ronments [26] and have been combined with sampling-bagedmeing [5, 2]. For
dynamic environments, relaxationsIds are typically considered, such asafety
[14]. This notion guarantees no collision foseconds in the future for each node of
a sampling-based tree. A sampling-based planner was @s#Ed-cushioned robots
moving in dynamic environments, where an escape maneuecaaputed when
the planner failed to find a solution [15]. Learning-baseg@ragimations ofICS
can also be found [16], as well as approximations of stittee space obstacles [6].
Other works focus on the interaction between planning andisg, and point out
that planning must be limited within the robot’s visibilitggion [1, 25]. The current
paper extends the authors’ earlier work [3], which integglat sampling-based plan-
ner withICS avoidance [2] to safely plan for multiple robots that fornaedetwork
and explored an unknown workspace. The previous work redursynchronous
planning operation, which simplified coordination.

Planning for dynamic networks of robots has been approaohedombination
of centralized and decoupled planning [7], without consitg however, theICS
challenge. Centralized planning does not scale and deedwgpproaches, which
may involve prioritization [9] or velocity tuning [22], aiecomplete. The existing
work follows a decoupled approach for performance purpdsesntrast to veloc-
ity tuning, it weakly constraints the robots’ motion befa@nsidering interactions
since it allows multiple alternative paths for each robo¢@ath cycle. At the same
time, it does not impose priorities but instead robots resgheir neighbors in a way
that emerges naturally from their asynchronous operation.

Contributions This work extends the range of problems that can be solfied e
ciently with guarantees farCS avoidance. The paper presents a general framework
for independent but communicating second-order robotsdolr their destinations
in an otherwise known environment. The framework is fullstdbuted and relies on
asynchronous interaction among the robots, where thesotagtianning cycles are
not synchronized, the robots have no knowledge about tloeik differences and no
access to a global clock. It is based on the exchange of gamtay plans between
neighboring robots that are guaranteed to be collisioa-#¢hile contingency plans
have been used in the past, this work emphasizes the impertditommunicating
contingencies in multi-robot scenarios and studies thaaspnous case. A proof
that the proposed scheme guarante€S avoidance is provided. The framework
has been implemented on a distributed simulator, where reédh is assigned to a
different processor and message passing is used to convey H@nexperiments
consider various scenarios involving 2 to 48 robots and dhestnate that safety is in-
deed achieved in scenarios where collisions are frequéme ifCS issue is ignored.
The experiments also evaluate thiféaéency and the scalability of the approach.



4 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

2 Problem Statement

Consider robots operating in the same known workspace vétit ®bstacles. Each
robot R exhibits drift and must satisfy non-holonomic constraexpressed by dif-
ferential equations of the fornx = f!(x,u'), g'(x',X') < 0, wherex' € X' represents
astate u' is acontrol and f',g' are smooth. The subset of thtate spaceX' that
does not cause a collision with static obstacles is denated aThe robot model
used in this paper can be found in Section 5 and involves exat&in controlled
car-like systems, including versions with minimum positixelocity.
EachR is located at an initial staté(0) and must compute plans that will bring
it to its individual goalxg(tmax) without collisions and within finite timéyax. Then:
e A plan is a sequence of controfgdt) = {(uy,dts),..., (un,dtp)} (dt = X; dt;).
e A plan p(dt) executed at statet) defines drajectory : n(x(t), p(dt)), which is a
sequence of states.
e Atrajectory isfeasibleas long as it satisfies functioisandg' for robotR'.
e A plan p(dt) is valid at statex(t), if it defines a feasible trajectormy(x(t), p(dt)).
e A state alongr(x(t), p(dt)) at timet’ € [t : t +dt] is denoted as[x(x(t), p(dt))](t’).
e A feasible trajectoryr(x(t), p(dt)) is collision-free with respect to the static ob-
staclesif: Vt e[t:t+dt]: Xnx(x(t), p(dt)](t") € X;s.
e For atrajectory concatenation (figure below)n’ (z(x(t), p(dt)), p’(dt)), plan
p(dt) is executed ax(t) and therp’(dt’) is executed at state[n(x(t) p(dt))](t+dt).
 Two trajectories foR andR! arecompatible: 7' (X (t)), p(dt')) =< 71 (xI (t}), p! (dt}))
aslongas: o ity = xr(t) ¥ t e [max(t.tl) : min(t + dtl.ti + )]
wherex = xI means thaR' in statex does not collide withR! at statex!. The
corresponding plang(dt'), p(dt!) are also called compatible at stat@'), xi(t}).

The robots are equipped with an omnidirectional, rajectory concatenation:
range-limited communication tool, which is reliable ), pv), pary o
and used for coordination and collision av0|dancw(;;,) S)IE+do)
The robots within range oR define the neighbor-
hoodN'. A robot has information about other robots only if they conmicate.
Given the above notation, the problem dittributed motion planning with
dynamics OMPD) can be defined as follows: Considarrobots with range-limited
communication capabilities operating in the same workspeith obstacles. Each
robot's motion is governed by second-order dynamics sgechi f' andg'. Ini-
tially, robot R is located at state!(0), wherex(0) € X, andV¥i, j: x(0) = xI(0).
EachR must compute a valid plap! (tmax) SO that:
o X[ (X(0), p'(tmex))](tmex) = Xy(tmex) (i-€., the plans bring the robots to their indi-
vidual goals within timetyx),
o Vi, Vt €[0:tmax]: X' (X(0), p'(tmax))](t) € X5 (i.€., the resulting trajectories
are collision-free with static obstacles)
e andVi,j: #'(X(0), p'(tmax)) = 71 (X(0), p!(tmax)) (i.€., the trajectories are pair-
wise compatible from the beginning and until all the robetmah their goals).
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3 A Simple Framework without Safety Guarantees

This paper adopts a decentralized framework for scalghilitposes. Each robot’s
operation is broken into intervalsty[: t|],[t},t)], ..., [t} :t\ ]....), called cycles.
During [t!_, : t}], robotR' considers dierent plang7' for cycle [t, : t! .1, given the
future initial statex (t;). Through coordinatiorR' selects plarpl ([t} : t! ,]).

It is assumed that the duration of each cycle is constant laadame for all
robots:Vi, ¥n: timl—t‘n = dt. Nevertheless, the robots do not have a synchronous
operation: the cycles amongfidirent robots do not coincide at[plis typically dif-
ferent thart(J). Synchronicity is a restrictive assumption, as it requakshe robots
to initiate their operation at exactly the same time althotigey may be located in
different parts of the world and may not communicate their irstiztes.

Given this setup, Algorithm 3.1 outlines a straightforwapgproach for the single
cycle operation of each robot that tries to find compatibéapl During (., _, : ti], R
computes alternative partial plaf for the consecutive planning cycle. In parallel,
R listens for messages from robots in neighborhdbdThe messages contain the
selected trajectories for each robot. When time approathes R selects among
all trajectories that are collision-free and compatibléwthe neighbors’ messages,
the one that brings the robot closer to its goal. If such @¢tayy is indeed found at
each iteration, then tHe&MPD problem is eventually solved by this algorithm.

Algorithm 3.1 Simple but Unsafe Operation & During Cycle [, :ti]

T —0andiIN —0
while t < tl, —e do
7 (x‘ (tL)? p (ﬂf tir,1+1)) « collision-free trajectory from a single-robot planner
I I v ' (X(th), p'(th - t, 1)
if Ri e N' is transmitting a trajectory! then TN «— 1IN U 7
for all 7' € IT' do
for all 7 e IN' do
if 71 % 7} (incompatible trajectorieshen I7' « I7' — 7'
. — trajectory inIT' which bringsR' closer to the goal given a metric
Transmitr', to all neighbors ifN' and execute’, during next cycle

4 A Safe Solution to Distributed Motion Planning with Dynamics

A robot following the above approach might fail to find a teifEy 7. This section
describes a distributed algorithm that guarantees theegxis of a collision-free,
compatible trajectory for all robots at every cycle.

A. Safety Considerations - Inevitable Collision States: One reason for failure
is when the single-robot planner fails to find collisionéigaths. This is guaranteed
to happen whem (t\) is anICS. Statex(t) is ICS with regards to static obstacles if:
¥ p(c0) : A dt €[t,o0) so thatx[z(x(t), p(e0))] ¢ X.
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Computing whether a state I€S is intractable, since it requires reasoning over
an infinite horizon for all possible plans. It isflgient, however, to consider conser-
vative methods that identify states that act ICS [13, 2]. The approximation rea-
sons over a subset of predefined maneuy#ss), called herecontingency plans
If R can avoid collisions in the future with static obstaclesi&t,) by guarantee-
ing that a contingency playl(c) € I''(c0) avoids collisions over an infinite horizon,
thenx (t,) is not ICS with regards to static obstacles. For cars, braking mameuve
are stfficient since it is possible to reason over an infinite timez@riwhether these
plans will collide with static obstacles. Circling manets/ean be used for systems
with minimum velocity limits, such as airplanes.

Multiple moving robots pose new challenges fgS. Trajectoriesr’ and 7!
may be compatible for the next cycle, but the correspondofmpts may reach
states that will inevitably lead them in a future collisiofhus, safety notions
have to be extended into the multi-robot case. It is stillessary for computa-
tional reasons to be conservative and focus only on a setmingency plans.
Formrobots(R!, R?,...,R™} executing plangp(dtl), p>(dt?),..., p™(dt™)} at states
{(XL(t), X2(t), ..., X™(t)}, statex (t) is considered aafe stateif:

3 9'(c0) € I'(0) SO thaty t' € [t,00) : X[ (X (t),y' (00))](t') € X and
Viellml, j#i, 3yl(e) e (e0): (X (1),5' (00)) < (I (K (1), p(dt))), 7! (0)).

In the above definitiorgt! is the remaining of robd®i’s cycle past time. Note that
atrajectory concatenation is used Rfs trajectory. In this trajectory concatenation,
pl(dtl) is executed for timelt! and then the contingency!(c) is applied. The
reason is that as robots decide asynchronously, it may hajh@e att, robot R}
has already committed to plapi(dt!). Extending the assumption in the problem
statement about compatible starting states, the followdisgussion will assume
that the initial states of all the robots are safe statesn&mealgorithm for th®MPD
problem must maintain the following invariant for each rbaond planning cycle:

Safety Invariant: The selected trajectoy, (X' (th), p'(t, : t'. ,)):
a) Must be collision-free with obstacles.

b) Must be compatible with all other robots, during the cy(je t|
A (), Pt 1, ) = (I (), Pt th,,)) Vi #i

¢) The resulting statel[nL](t‘ml) is safe for all possible future pIar;:i(t‘n+1 : 00)
selected by other robot$ £ i). In other words, the concatenationzfwith ' (co)
must be compatible with the concatenations of other vedicle., Vj #i:
AL (K (), Pt 2 1, )) 7 (00)) = A (A (th), PI(th - t,1))- 7 (e0)).

Point c) above means th& has a contingency plan afz.J(t ), which can
be safely followed for the other robots’ choices given thgoathm. If the invariant
holds for all the robots, then they will always be safe. If éory reason a robot can-
not find a plan that satisfies these requirements, then itesaartrto its contingency
that guarantees its safety.

+l):
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Algorithm 4.1 Safe and Asynchronous OperationRfDuring Cycle E_, : t}]

L 0T 0, ITNg, 0, [Ny, < 0
2: forall R' e N' do ) ) ) )
30 N HB‘rev U Al (A () ), pl(t) ). v(th o))
(i.e., include all past trajectories and attached contingsof neighbors)
4: while t <ty —edo_
5. A(d(t), p'(t: +1)) « collision-free trajectory from a single-robot planner
6: 7r7<—7r(7'r(x'(t) pi(t : t.1)s ¥(t,,, - ) (i.e., contingency concatenation)
7. ifYte [tn+1 oo) X[7r ](t) € Xt then
8 71 v 7,
9 for all 7ry Hr'}‘r'a, do
10: if 7'r * 7r7 then
11: 11 e 11 m,
12 if RleN'is transmlttlng a trajectory and an attached contingehep
13: nnN;N — 11Ny U (O, PIEh ), 1)), ¥(th, o)
14: for all =, eH' do
15.  forall 7(7 ey, do
16: if ), % ) then
17: ' «11'-n,
18: if 11' empty or if a message was received during compatibility clieek
19: 7l 2 (X (th), y(ti : ) (i.e., follow the available contingency for next cycle)
20: else
21: < trajectory inf7' which bnngsF\’| closer to the goal given a metric
22: Transmitr. to all neighbors ifN' and execute!. during next cycle

B. Safe and Asynchronous Distributed Solution: Algorithm 4.1, in contrast to
Algorithm 3.1, maintains the safety invariant. The proidodows the same high-
level framework and still allows a variety of planning te@jures to be used for pro-
ducing trajectories. The fierences with the original algorithm can be summarized
as follows:

e The algorithm stores the messages received from neighboirsgdthe previous
cycle in the seﬂprev (lines 1-3). Note that the robots transmit the selected trajec-
tory together with the corresponding contingeffiéges 12-13 and 22).

e A contingency plany(t:1+1 . o0) is attached to every collision-free trajectory

(), pl(t] : ti..1)) and the trajectory concatenatiat) is generatedline 5-6).
Note that potentially multiple dierent contingencies can be attached to the trajec-
tory 7' (X (t), p'(t, : tLﬂ)). Each resulting trajectory concatenation is treated ind
vidually by the algorithm.

e The trajectoryr, is added ta7' only if it is collision-free with static obstacles for
an infinite time horizor{lines 7-8), thus guaranteeing thapr'](tml) IS NOtICS.

° ny is rejected, however, if it is not compatible with all thejéetories and contin-
gencies of neighbors from the compatibility cheéltikes 14-17). R checks not just
trajectones for the next cycle but its trajectory concatems with contingencies
m, against its neighbors’ trajectory concatenatmbs
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e The final changglines 18-21) addresses the possibility that is empty or when
a message arrives whiRl executes its compatibility check. If any of the two is
true, thenR' selects to follow the contingenay(t!, : «), which was used in the
previous cycle to prove that(t\) was safe. Otherwisé® selects among the set
IT' the trajectory that brings it closer to the goal accordingtdesired metric.
previous cycle, stored iﬂg‘,'eV (lines 9-11).

e The while loop(lines 4-13) is executed as long as timeés less than the end of the
planning cyclet) minus are time period. Time: should be sfiicient for the robot
to complete the compatibility chedkines 14-17) and the selection proce@snes
18-22). If the robot is running out of time, the robot should immeeiy select a
contingency in order to guarantee safety. In a real robotémpntation, this can
be achieved through an interrupt or a signal that stops éxa&cand enforces the
contingency. In a serial implementatiernas to be sfliciently large.

Overall, each robot selects a plpift, : t! ) and a contingency'(t! , : o) that
respect the plans and contingencies of other robots that hesn selected before
timet!,. If no such plan is found or there is no time to check againstyx@coming
messages, then the contingendft!, : «) is selected.

Computational Complexity: The algorithm’s complexity depends on the num
ber of neighbordN', which in the worst case is the total number of robhtsin
order to evaluate the cost of operations involving trajeesy it is important to con-
sider a trajectory representation. A discrete sequendaiasscan be sampled along
a trajectory, given a predefined resolution in tilQ€g(i.e., the technique becomes
resolution-safe in this case). Then, &be the upper limit in the number of states
used to represent each trajectory conceternafodenotes the upper limit in the
number of plans considered during each planning cycle fcthrent agent.

Given the above notation, the complexity of the algorithwalsous operations is
as follows: (a)Lines2-3: Sx N, (b)Lines7-8: PxS, (c) Lines9-11: Px N x S?

(if the states in a trajectory are not accompanied by a gliinalstamp) oPx N x S

(if the states are tagged with a global timestamp) L{dgs 14-17: Same as above,
(e) Lines 20-21: P, assuming constant time for computing a cost-to-go metnic f
each state, (fl.ine22: Nx S.

Overall, the worst-case complexity Bx N x S2. Note that for robots with lim-
ited communication, the parametsris reduced. Furthermore, coarser resolution
in the representation of trajectories imprové&eency but introduces the probabil-
ity of collision due to resolution issues. Similarly, catesiing fewer plans reduces
computational complexity but reduces the diversity of Sohs considered at each
time step. Finally, lower maximum velocity or higher maximaeacceleration also
assist computationally in the case of braking maneuvers.

C. Guaranteeing Maintenance of the Safety Invariant: This section provides
a proof that Algorithm 4.1 maintains the safety invariantegi some simplyfying
assymptions that will be waived later.

Theorem 1: Algorithm 4.1 guarantees the maintenance of the safetyriamviain
every planning cycle given it holds during the cydie:(t}) and that:
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i) all robots can communicate one with another,
i) plans are transmitted instantaneously between robots.

. _ _ _ Proof: The proof is obtained by
th tho thiz thi3 induction. Thebase case holds for

R R R R R because of the Theorem’s as-
b b P ! sumption that the Invariant holds
_ 2 S Y U A during cycle ¢, : t}). Theinduc-
R + + + tive step will show that if the In-

Fig. 2 The replanning cycles of two neighboring roboté{ariant ho"?'s d!mng the Cydeh(:

R andRl. The times denote transitions between plark, ;) then it will also hold dur-
ning cycles for each robot. The vertical arrows denofag the cycle Q. th,,) for Al-

the transmission of information, e.g.tatR transmits gorithm 4.1 Wi;houﬁoss of gen-
L0 iy (+ it -4 i . -

7 (7 (X (). Pt .' 1)) Yy 2 09))- erality consider Figure 2 and fo-

cus on roboR'. To prove the inductive step, it is necessary to show that eae

of the three points of the Invariant will be satisfied duritig (: t..,). For cycle
(t,,,  t,,,) there are two cases: (1) A compatible trajectary 7, € /7' is selected,

or (2) the current contingency is returned.

Case 1: Atrajectory n, € I7T' is selected.

a) Trajectoryr!, has to be collision-free as part o

b) Assuming instantaneous plan transmission and bytﬁmeRi has been sent and
has available the choices of other robots for cycles thatlstdoret, ;. Sincer, €
IT' is selected, none of these messages arrived during the tibitigyecheck. This
means thaR'’s trajectorys) (#)(xI(t) ), pl(t) ;1 t! ), ¥(t)., : ) ) is available
to R during the compatibility check. Then the cyctg ¢ : t; . ,) can be broken into
two parts:
i) During part ¢, : trj1+2)’ the selected plap'(t , : t ) is compatible with

p! (tﬂ1+1 : trj]+2) because the second plan was knowRtwhen selecting’,.

ii) Forpart ¢ ,:t ) there are two cases f& at timeterZ:

o RI will either select a plaryni(trj1+2 : tr"]+3) that is compatible withp'(tl , : ! ),

o or it will resort to a contingency!(t! , : «0), which, however, is already com-
patible with trajectoryr,.

In both casesR! will follow a plan that is compatible witlp'(t, ., : t. ).

Thus, the second point b) of the Invariant is also satisfieddootsR' andR!.

c) For the third point of the Invariant, the contingengyt! ., : o) has to be com-

patible with the future choices of the other robots. Focuaragn the interaction

betweerR andR!. There are again two cases Rrat timet) ,:

i) Rl will select a plarp! (trj]+2 :trng) and a corresponding contingem&(trjﬂ : 00).
This plan and contingency respect by construciSs contingencyy'(t . : o),

n+2 -
since it was known t&/ at timet! .



10 Devin K. Grady, Kostas E. Bekris and Lydia E. Kavraki

i) Or Rl will resort to its contingency/j(trjpr2 : o), which, however, the contin-

gencyy' (tin+2 : 00) respected upon its selection.
In any case, whateve®! chooses at timegHz, it is going to follow plans in the

future that are compatible witj7i(tin+2 : ). Thus, point c) is also satisfied.
Case 2: A contingency '(t!, , : o) was selected.
Theinductive hypothesisimplies thatx'(t'. ,) is asafe state. Thus:

a) y\(t' , :t ) is collision-free with static obstacles

b) The current plans of all robots will be compatible wight! , : t. ), which
was known to them at tim&,. Furthermorey/(t , : t. ,) already respects the
contingencies of other robots that might be executed beﬁgie

c) The stated[/(t! , : 00)](t!. ) is trivially safe, becaus®' can keep executing the
same contingency for ever and this contingency will haveeadspected by its

neighbors, as it will always be known ahead of time.

In both cases, all three points of the Invariant are satigtied® and the inductive
step is proved. Thus, if the Invariant holds, the algorithaintains its validity. O

D. Addressing the Assumptions: A
tJ
Theorem 1 assumed that messages— o :
are transmitted instantaneously and y
that all the robots communicateR ' }

one with another. The assumption

that plans are transmitted instantaFig- 3 If messages arrive after the start of a neigh-
neously will not hold in real-world bor’s future cycle, as with the message fréto R

. . . above, this is problematic.
experiments with wireless commu-

nication. Similarly, it is more realistic to assume thatatdocan communicate only
if their distance is below a certain threshold. In the latiase, the proposed ap-
proach can be invoked using only point to neighborhood comeation and thus
achieve higher scalability. The following theorem showat tine safety guarantees
can be provided without these restrictive assumptions.

Theorem 2: Algorithm 4.1 guarantees the maintenance of the safetyriamviain
every planning cycle given it holds during cycts (t}) and that:

ti '

i) two robots with limited communication ranges can comnaate before they en-
ter intoICS given a predefined set of contingencigsv),

i) robots utilize acknowledgments that signal the recaptof a trajectory by a
neighbor.

Sketch of Proof: Theorem 1 showed that the invariant holds as long as it wag val
during the first cycletg : til) and that two vehicles can communicate continuously
sincet‘o. For two robots with limited communication range, denotérag tcomm the
beginning of the first planning cycle of either robot aftezyttare able to communi-
cate. If attcomm, both robots have available a contingen€y) € I'(c0), that can be
used to prove the safety of their corresponding states, dlehe requirements of
Theorem 1 are satisfied fq;: tcomm- Thus the invariant will be maintained.
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Regarding the issue of delayed messages, consider thehea®¥'s cycle ends
at timet},, which is before the end of the neighboriRfs cycle at timet‘n. Figure
3 provides an example. If the transmission of the trajectdrio R is delayed, it
might arrive after time, andR' cannot detect that it did not take into account the
choice ofR! during its compatibility check given Algorithm 4.1. ThuRs choice
might end up being incompatible witt{. Notice that this problem becomes more
frequent when Algorithm 4.1 is employed by robots that hawreckronized cycles.
If an acknowledgment message that signals the receptiotrajeatory by a neigh-
bor is used, howeveR' can acknowledge the message’s reception, whether itarrive
before or aftet;,. If the acknowledgment arrives Bt beforet), (as well as from all
other neighbors), it knows that it is safe to exectftelf the acknowledgment is not
received on timeRl can revert to its contingency which is by construction resge
by the future plan oR', whatever this is. Thus, the introduction of an acknowledg-
ment resolves the issue of possible delays in the trangmissitrajectories. O

5 Experimental Results

To validate the theoretical discussion, simulated expentsiwere conducted. Our

first experiments revealed performance deficits, howevactigal modifications in

the implementation of the algorithm were made. These rediri significant speed
ups and quick convergence to a solution.

Implementation Specifics: This section describes some steps to make the imple-

mentation of Algorithm 4.1 morefgcient computationally. In particular:

e Instead of checking all the candidate plafiswith the trajectories of the neigh-
borer'}‘;N, only the best plan idl' according to a metric is checked. If this plan
fails the check, then the previous contingency is selected.

e At each step of the “while” loop in Algorithm 4.1 (lines 4-13he implementa-
tion propagates an edge along a tree of trajectories usiagplsg-based planner,
instead of generating an entire trajectory. If the edgersiﬂtﬁstLH, a contingency

y(tin+1 : o0) is extended fronx(t‘n+1). If the contingency is collision-free and com-

patible with the available trajectories of neighborﬂgﬁ'e\,, x(timl) is assumed safe.
Otherwise, it is unsafe and no future expansion of an edg®isexd pastx(t:Hl).

e The sampling-based expansion of the tree structure ottajes is biased given
a potential field in the workspace that promotes the exparfithe tree towards
the goal [2]. The tree expansion is also biased away fronr etifgcles. Diterent
algorithms can be considered for the actual planning peof@gs 15, 8, 23].

e There is no need to flerentiate in the implementation betwel'é?},'ev andPh,,..
Each robot maintains a fer for messages from each neighbor. As new trajecto-
ries are transmitted, they replace the part of old trajezsathat has already been
executed by a neighbor along theffau.
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e The latency in the experimental setup was relatively lowusthe situation in
Figure 3 did not arise. Thus, the acknowledgement step waimcladed for the
experiments presented below, which reduced the numbeleoftpepeer messages.

Modeled System:The experiments presented in this paper are

using the model of a second-order car like vehicle [19] shown Wi?;ffiolfg
on the right side, wherex(y) are the car’s reference point i —éw C !

. . ; S ; . = w-sin{
Cartesian coordinates, is the car’s orientationy its veloc- W=
ity and ¢ the steering angle. The controls arethe accelera- 4'= @

tion, and¢ the rate of change of the steering angle. There are

limits both for state and control parametel®i{ < Wiax, 1]l < {max @]l < @max;
ll#]] < dmax)- All robots have range-limited communication out to 30%ttwe total
environment width, and brake to zero speed for contingency.

Environments Four simulated environments were

used for the experiments: i s v. e
1. An “empty” environment (Fig. 4 (left)), ) W "
2. an “dfice” environment (Fig. 1), o - -
3. a“random” environment (Fig. 4 (right)), and st | ©® w. @ -

4. an “intersection” environment with two cross- ) N
ing corridors (Fig. 5). flg. 4"Start|ng“ posmoyrjs for_ the
) ] ~ ‘“empty” and “‘random” environ-
These environments are presented in approximatents.

order of dificulty. The various experiments tested

different numbers of vehicles: 2, 4, 8, 16, 32, 48. Because thahibés alone took up
6% of the entire workspace (ignoring obstacles), the sizeefobots was reduced
to half for the 32 robot case, and to a quarter of their sizeter48 robot case. If
this was not done, then the robots would take up 12% and 18%eofvbrkspace,
respectively. Since much of the workspace is already oecupy obstacles, this
reduction in size assists in reducing cluttéfeets that &ect solution time. The
empty environment was the easiest to solve. Tifie®environment was chosen as
a gauge for how hard a structured environment can be. Theas,abdheir original
size, are about/h of the size of the hallway. In the random environment, there
were polygons of varying shapes and sizes. The intersectisa seemed to be the
hardest to solve, since the robots not only have to navidataigh a relatively
narrow passage together with their neighbors, but theylbfereed to traverse the
center, almost simultaneously.

Fig. 5 Snapshots from a typical run with 32 robots; Final image is thigrjectory of robot O.

When possible, startirigoal locations were identical across runs as more robots
were added. Experiments for the same number of robots havsatine stafgoal
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locations. All experiments were repeated at least 10 timks.algorithm was run
in real time such that computation time is equal to execuiie.
Evaluation of Safety To verify that the system implemented truly provides the
guarantees presented in this paper, thrékemdint cases were considered for the
algorithm: (i) an implementation without contingenciég, \ith contingencies but
for robots with synchronized cycles and (iii) with contimgées and robots that
arenot synchronized. For each type of experiment the followingrigeeports the
percentage of successful experiments. 20 experimentsexereited for each case,
averaging across synchronous and asynchronous casegsltilts presented clearly
indicate that enabling contingencies results in a safeesy#t all cases.

100%]

iments

Successful
Exper
1

2 4 8 16
mWith . Number of Robots gWithout
Contingencies Contingencies

Scalability and Efficiency Once the safety of the approach was confirmed, the fo-
cus turned on evaluating thé&ects of contingencies. A high-selection rate of con-
tingencies is expected to decrease the performance of bioéstas these plans are
not selected to make progress towards the goal. The folipwable presents the
average duration of experiments in seconds and the averdgeity achieved by
the robots both for the case without contingencies and tee wdth contingencies
(both for synchronized and asynchronous robots). The pegoce data without
contingencies is from the cases where none of the robotseeites, which means
they often correspond to fewer than 20 experiments, andrireszases there is no
successful experiment without contingencies to compaa@ay

Effects of Contingencies Number of Robots

2 4 8 16
Scenes Approach Time Vel. Time Vel. Time Vel. Time Vel
Empty WithoutCont. 85.1 6.7 845 48 829 39 875 34
With 826 69 909 47 888 37 3358 14
Office Without Cont. 97.0 83 981 6.6 X X X X
With 99.1 82 1115 59 2069 27 5533 1.0
Random Without Cont.  87.2 65 844 48 883 36 X X
With 88.0 65 103.1 44 924 36 6048 1.3
Intersection Without Cont. 101.0 8.0 100.0 80 X X X X
With 1089 75 2725 42 469.1 23 14154 1.0

The behavior of the robots is indeed more conservative wbetirngencies are
employed and it takes longer to complete an experiment.oftth the algorithm
has no progress guarantees, the randomized nature of thabiistically com-
plete planning algorithms helped téfget this. The simulations always eventually
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resulted in a solution for the tested problems even if thet®bemporarily entered
oscillatory motions. The local penalty for trajectorieattbrought an agent in close
proximity to neighboring robots helped to reduce the oanee of oscillations and
resulted in significant improvements in performance.

Synchronous vs. Asynchronous\nother objective of the experimentation proce-
dure was to evaluate theffirences in the performance of the algorithm between the
synchronous and the asynchronous case. In the synchroaseisall robots have a
zero time dfset but they are not aware of their synchronicity and theyatéaking
advantage of it as in previous work [3]. In the asynchron@secthe fisets are the
same across 10 averaged runs. Theksets are randomly precomputed and range
from 0 to a maximum of Bl of the planning cycle.

Sync. Vs. Async. Number of Robots

2 4 8 16
Scenes Approach Time Vel. Time Vel. Time Vel. Time Vel
Empty Asynch. 815 70 855 48 873 38 4000 1.4
Synch. 838 68 963 45 903 36 2715 14
Office Asynch. 96.0 84 1125 6.0 1975 28 5410 1.0

Synch. 1023 7.9 1105 59 2163 27 5655 1.0
Random Asynch. 855 6.7 908 45 858 38 7296 1.4

Synch. 905 6.3 1155 42 990 35 4800 1.3
Intersection Asynch. 1050 7.8 2683 41 3358 29 899.8 1.3

Synch. 1128 7.2 2768 43 6025 1.6 19310 0.8

When the robots’ cycles are synchronized, then it will be rofige case that
robots are transmitting simultaneously, and potentiallyiry the compatibility
check of their neighbors. This in certain cases resultsighty longer durations
for the completion of an experiment, as well as lower avekadgcities, but overall
there is no consistentfect as in the random and empty scenes, there is a perfor-
mance boost under synchronous operation, especially asutheer of robots in-
creases. In comparison to previous work [3] where synchitynivas specifically
taken advantage of, it is clear that the quality of the padiscsed are worse in the
current asynchronous implementation. However, it is etguethat further research
in asynchronous coordination algorithms can reduce thi®peance gap.

Scaling Larger scale simulations for 32 and 48 robots were run toysthd al-
gorithm’s scalability. For these cases, the approach witlsontingencies always
fails. Note that as mentioned earlier, these robots aredofoed size to decrease the
effects on completion time due to a cluttered environment.

Achieving safe, asynchronous operation,
for 48 second-order systems with the pro-
posed setup is a challenge. The agent modmellm0
is complex as are the safety guarantees ag="*
dress theICS issue. The simulation en-F 800
vironment mimics the constraints of real- 400
world communication by running each agent oo LS8N s W _E 1.
on a separate processor and allowing only ™" Ebsy "™ |iRterdection
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message-passing communication (TCP sockets). An expafriwith 48 robots re-
quires 49 separate processors (1 processor is used as atgimskrver).
Parameter Evaluation An important parameter for the proposed approach is the
duration of the planning cycle. For shorter durations ofleycthere was a higher
deviation between runs and it was not possible to executéatger experiments
with 32 and 48 robots for a cycle duration less than 2 secoFHs. limitation is
due to the single thread running the world simulation. ItXpexted that the limit
in hardware implementation would be dependent on the corwation latency.
The average completion time shows a noticeable increaseakitation of a cycle
increases. The experiments presented in the previousstaldee executed for a
cycle duration of 2.5 seconds.

Number of Robots

4 8 16
Scene Cycle Time Vel. Time Vel. Time Vel. Time Vel

1.0s 533 108 525 78 592 58 969 35
15s 503 97 638 64 600 53 1971 20
Empty 2.0s 714 80 740 58 756 42 1168 27
2.5s 795 72 828 52 865 37 1340 22
3.0s 984 58 984 44 999 32 1350 20
3.5s 167.7 3.8 1936 25 1255 1.7 4827 0.7

Planning Cycle

6 Discussion

This paper presented a fully distributed algorithm thatrgoteesICS safety for

a number of second-order robots that move in the same eméon Simulations
confirm that the framework indeed provides safety and isabdaland adaptable.
Additional experiments not presented above were conddoteglsystem with pos-
itive minimum velocity, i.e., a system that cannot brakedwmzvelocity. Safety was
achieved for this system using dfdrent set of contingencies than braking maneu-
vers. In this case, the system was required to turn into tieest circle possible
without exceeding the specified limits on velocity and toghrate. Future work
includes: (a) considering robots withfidirent durations for planning cycles, (b)
dealing with unreliable communication, (c) studying theets of motion uncer-
tainty to the protocol’s performance, (d) distributed opsation for improving the
quality of paths selected despite the asynchronous operd#) dealing with non-
cooperating vehicles and (f) addressing tasks that go laeymving from initial to
final states. Experiments using physical systems with éstarg dynamics would
provide a real-world verification of the approach.
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