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This paper investigates the problem of path planning
for a thin elastic plate. The underlying geometric
model for the plate is provided by a Bézier representa-
tion. The geometric model is augmented by a realistic
mechanical model. The latter permits the computation
of the shape of the plate with respect to a set of grasp-
ing constraints by minimizing the elastic energy of the
deformation. We use a probabilistic roadmap planner
to compute paths for the plate and we present a num-
ber of experimental results to illustrate our approach.
Our work 1s a first step towards considering the physi-

cal properties of objects when planning.

1 Introduction

The problem of planning a path for a robot consisting
of rigid parts has been studied extensively over the last
decade [17, 21]. This paper describes a first step in the
direction of solving a variant of the above problem,
namely the problem of planning a path for a flexible
robot/part. We focus on the case of an elastic metal
plate to illustrate our approach and explore some of
the 1ssues arising when considering flexible parts.

Several important applications motivate our re-
search: in industrial settings there is a need to manip-
ulate sheets of metal [26], pipes that can bend [31], and
cables [25].

with virtual prototyping, planning is used to remove

In assembly maintainability studies done

a part from an assembly given only the CAD model
of the assembly [10]. The flexibility of the part needs
to be considered as engineers use deformable parts to
Last but not least,
our work may have applications in domains like com-

produce compact assemblies [9].

puter generated animation, where physical properties
can help generate realistic sequences, and virtual envi-
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Figure 1: Snapshots along a path computed by f~-PRM for

an elastic metal plate that can only bend.

ronments for surgical training, where flexible medical
tools are guided inside the human body.

This paper addresses the problem of planning paths
among obstacles for a thin elastic metal plate. We as-
sume that the plate is manipulated by two wide grip-
pers that can bend the plate. Although our work is
not restricted to manipulation that induces only bend-
ing, we focus on this case to discuss our approach in
detail. The geometry of the plate is modeled using the
Bézier representation, while deformations correspond-
ing to grasping conditions are computed by minimiz-
ing the elastic energy of the plate. The elasticity limit
of the material of the plate is taken into account and



we reject deformations that may cause a permanent
change in its shape. The actual robots performing the
manipulation are not considered. Work in a similar
spirit is done in assembly sequencing, where removal
paths for parts are computed without taking into ac-
count the tools needed to perform the removal [10, 39].

We plan paths for the elastic plate using an ex-
tension of the Probabilistic RoadMap planner (PRM)
in [19, 20, 28, 33].

one of the few planners that can deal efficiently with

PRM was chosen because it is

high dimensional planning problems [20]. The geomet-
ric representation of deformations requires in general a
large number of parameters and these specify degrees
of freedom (dof) for the surface. We call our new plan-
ner flexible-PRM (f~-PRM). {-PRM builds a roadmap in
the configuration space of the plate. The nodes of the
roadmap are computed by first selecting random val-
ues for the parameters that specify the manipulation
constraints and then obtaining an equilibrium configu-
ration for these values. The edges of the roadmap are
low-energy paths computed by a local planner. Once a
sizable roadmap has been produced, f-PRM attempts
to answer a user query by connecting the initial and the
final configurations to the roadmap and then search-
ing the roadmap for a sequence of paths between these
nodes. A few snapshots along a path produced by f-
PRM for a surface patch that can only bend (a 7-dof
problem) are given in Figure 1.

Although in this paper we concentrate on the case
of an elastic plate which is represented by a Bézier sur-
face and can only bend, our approach is not restricted
to the specific energy model, geometric representation,
and grasping constraints used. As a proof of concept,
we use our framework to plan paths for a surface patch
that can assume a wide range of deformations due to
less restrictive energy and manipulation constraints.
This case, which is separately investigated in [18], may
be of interest in computer generated animation. We
report experiments solving a 27-dof planning problem
with few modifications of our original planner.

Our work blends ideas from planning for high-
dimensional problems (PRM) with work in geomet-
ric modeling (representations of curves and surfaces)
and mechanics/physics (energy models for elasticity or
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other physical properties). The randomized framework
of f-PRM provides an excellent testbed for investigat-
ing several novel issues that arise in the context of plan-
ning with flexible objects. These include (a) under-
standing the implications of using different geometric
representations for the objects, (b) acquiring meaning-
ful energy models, (¢) studying manipulation of flexible
objects and its effect on the attainable deformations
of these objects, (d) devising algorithms for planning
low-energy paths between configurations with different
deformations, (e) investigating approaches to efficient
collision checking when the shape of the object changes,
and (f) developing methods for improving the overall
quality of the paths.

This paper is organized as follows. Section 2 briefly
surveys related work. Section 3 addresses geometric
and mechanical issues related to the representation of
an elastic plate and its manipulation. Section 4 out-
lines the general principles of -PRM. We present in
Section 5 experimental results for an elastic surface
that can only bend. We discuss in Section 6 how to
use f-PRM for planning with a less restrictive energy
model.

2 Related Work

Path planning for a flexible surface defines a high-
dimensional problem and fortunately much progress
has been made in robotics on this front. However little
has been done to accommodate the physical properties
of robots such as their elasticity. Issues related to ob-
ject deformation have been studied mostly in the areas
of mechanics, geometric modeling, and graphics. We
briefly survey separately each of the above areas.

Robotics Recent work on the path planning prob-
lem has produced several practical planners for robots
that consist of rigid parts (see for example [1, 2, 4,
11, 16, 20]). These methods routinely take into ac-
count geometric constraints such as joint limits and
obstacles, but also constraints arising from kinematics
such as nonholonomic velocity constraints due to the
rolling without slipping of wheeled mobile robots [22],
or constraints over the radius of curvature of a car-like
system [23, 33].
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With the exception of the areas of dynamics and
control that have guided the design of modern robots
[30], there are few cases where physical constraints and
planning have been tightly coupled. Kino-dynamic mo-
tion planning is one such case as it takes into account
dynamic constraints by planning in the tangent space
of the configuration space [12, 13].

As far as deformable robots and parts are concerned,
a lot of work has been done in the context of manipu-
lation. Robots with flexible links are now being built
since they facilitate certain tasks (like hammering a
peg into a hole) and their modeling and control is un-
der development (for pointers to current work see [26]).
Recent papers consider the dynamic analysis of robots
with flexible payloads such as two robots manipulating
a flexible metal sheet [26] or a vibrating object [31],
or solve the task of inserting one end of a flexible wire
into a hole while holding the other end [25]. Further-
more, research in snake-like robots has explored issues
related to “geometric mechanics” that are relevant to
our discussion [7, 27]. For example, the work [27] de-
scribes the net motion of a snake robot as a function
of variations in the mechanism’s shape variables.

Mechanics In mechanics there exists a large amount
of research on modeling physical properties such as
elasticity [6].
thin plates and develops an energy model for the de-

The work in [38] discusses the case of

formation of a thin elastic plate that depends only on
the planar deformation and the curvature of the plate.

Geometric modeling In geometric modeling sev-
eral representations for curves and surfaces have been
developed to enable accurate manipulation of shape
while considering a relatively small number of param-
eters [5, 14]. In this paper we use a simple model from
computer-aided geometric design for our flexible sur-
faces, namely the tensor product Bézier surface. Other
models may also be appropriate and this issue is cur-
rently under investigation.

Graphics In graphics physically based models have
been proposed for deformable parts [34, 35]. The use
of physical simulation and related optimization tech-
niques as a means of geometric interaction has been
applied to animation [36], drawing [37], free-form sur-

face and volume modeling [8], mechanical design [40],
and interactive molecular simulation [32]. For a dis-
cussion on the dynamic simulation of non-penetrating

flexible bodies see [3].

3 Deformation of an Elastic Plate

Before considering planning, we present the geomet-
ric and mechanical model used for the elastic plate.
We assume that the plate is manipulated by two robot

grippers.
version of the manipulation problem: we only specify

In this paper we do not consider the full

conditions, which we call grasping constraints or limit
conditions, and which reflect the effect of manipulation
on our object.

Let Fy = (W, Wa, W) be an orthonormal reference
frame for the undeformed configuration of the plate,
which we also refer to as the load-free configuration. In
that configuration the plate occupies the volume

0 S 1 S L
w w
A

We assume that h is small compared to L and W and
we represent the geometry of the plate by a surface.
However, we take into account the thickness h of the
plate in all energy calculations.

3.1 Geometric model for the plate

Tensor product Bézier surfaces are used to represent
our plates. The main advantage in choosing the Bézier
representation is that several grasping constraints can
easily be specified with the Bézier representation as
discussed in Section 3.2.

A Bézier surface is defined by a n x m control net,
made up of a grid of points in 3-space. Let Pj;,i =
0,...,m,7 = 0,...,m be these points, also called the
control points or Bézier points. The tensor product
approach obtains a point on the surface as

n

S(u,v) =YY Bi(u)Bh(v) Py, (1)

i=0 j=0



Figure 2: A biquadratic Bézier surface patch with its 9

control points and several isolines.

where u € [0,1],v € [0,1], and B (u), B/, (v) are the
Bernstein polynomials defined by

n

. ) u'(1—u)" "

1

s = (

In the following, we will denote by ¢, = 95/0u and
t, = 0S/0v the tangent vectors to the surface. In
the load free configuration, the control points have the
following coordinates P;; = (Lr, T%W, 0).

n
The surface contains the four corner control points.
The rest of the control points are not necessarily on
the surface but affect its shape. A simple illustration
of a biquadratic surface is given in Figure 2.

3.2 Grasping constraints for manipulation

We consider now a plate made of an elastic material
and we act on it by grasping two opposite edges using
for instance two wide grippers. Let us assume that we
can control the distance d < I between these parallel
grippers as shown on Figure 3. The elasticity hypothe-
sis states that there exists a mapping from the space of
deformations of the plate into R4 called the elastic en-
ergy of the plate. An equilibrium deformation is a local
minimum of the elastic energy in the space of deforma-
tions fitting the limit conditions imposed by a given
grasping. We call simple bending the set of deforma-
tions reachable by these grasping conditions. Simple
bending induces deformations for which the tangent
vector t, is constant over the surface and equal to its
value in the undeformed configuration. Any deforma-
tion can then be obtained from the curve S(u,0) by
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Figure 3: Grasping by two opposite parallel edges.

the following translation
1
S(u,v) = S(u,0) + (v — §)Wu_}'2.

We can thus represent this deformation by a Bézier
curve in the (w;, ws)-plane. That is

Stu) = Y- Bi ().

with u € [0,1]. We call this curve the profile curve
of the surface (see Figure 3). The grasping constraint
implies S(0) = Py, S(1) = P,. The position of the
other control points is computed by minimizing the
elastic energy of the plate as defined in Section 3.4.

3.3 Geometric analysis of deformations

We now define the deformation coefficients appearing
in the expression of elastic energy. Our discussion
draws from [38] which shows that the deformation of a
thin elastic plate depends only on the planar deforma-
tion and the curvature of the plate. For a general de-
formation, 6 coefficients are required: 3 for the planar
strain and 3 for the curvature. Under simple bending,
however, we need only consider the deformations of a
curve. In this case, all but one of the strain coefficients
and one of the curvature coefficients are zero. We an-
alyze below the simple bending case and provide some
intuition for the meaning of the coefficients involved in
the expression for elastic energy. We treat the general
2D case in the Appendix.
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Let us consider the profile curve S(u) as shown in
Figure 3. In the load free configuration, the position
of the control point P; is (iL/n,0,0) and the corre-
sponding Bézier curve is given by S(u) = (Lu,0,0).
The tangent vector ¢, (u) = S’(u) to this curve is thus
constant and equal to (L,0,0). As shown in Figure 4,
a deformation can be defined by an extension coeffi-
cient € and a curvature y. The expressions of these
coefficients are

o) = - D), )
N AOEEAT .
= e ¥

where t,(u) = S”(u) is the derivative of #,(u) in the
deformed configuration and x is the cross product. It
can easily be seen that ¢ represents the extension rate
of a small piece of matter of length dly in the w; di-
rection. That is ¢ = (dl — dly)/dly, where dl is the
length of the small piece of matter after deformation
(see Figure 4(b)). Equation (3) is the standard formula
for curvature, while Figure 4(c) points out that bend-
ing the plate induces extension and compression above
and below the medium surface. From now on, we will
denote the strain vector by

3.4 Mechanical analysis of deformations

Elasticity theory asserts that for a general surface the
elastic energy of a deformation is obtained by integrat-
ing the elastic energy per unit of surface (e(zx)) over
the surface, where e(z) is the previously defined strain
vector at some point z of the surface.

Under our hypothesis of one-dimensional deforma-
tion, the elastic energy per unit of surface w.r.t. the
local deformation of the plate is given by [38]

Y(e) = ¥*(x) +v°(e), (4)
where

) = e X )

v = 22 (6)
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Figure 4: Fztension and curvature coefficients.

E and v are coefficients characterizing the elasticity of
the material'. They are respectively called the Young
Modulus and Poisson ratio.

3.5 Equilibrium deformations

An equilibrium deformation is a local minimum of the
elastic energy among the deformations fitting the limit
conditions imposed by grasping and thus can be com-
puted by minimizing the elastic energy over the free
parameters of the geometric representation of the part.

In the simple bending case, the grasping condition
determines the position of two control points of the
profile curve: Py and P,. Hence, we are required to
minimize the elastic energy over the n — 1 free con-
trol points. To perform this minimization, we use the
conjugate gradient method [29]. The gradient of the
elastic energy is obtained by integrating over the plate
the partial derivatives of (4) with respect to the free

'For instance, for aluminum, E = 74 MPa and v = 0.34.



Figure 5: An equilibrium deformation of a surface with a

profile curve of 10 control points.

control points. Integrals are computed using the Simp-
son formula [29].

Figure 5 shows the result of the minimization of the
elastic energy for a user-specified d, under the simple
bending condition and with a profile curve of 10 control
points. Notice that the behavior of the surface is the
expected one and that the symmetrical surface with
respect to the plane defined by the grasping edges is
also an equilibrium configuration.

3.6 Elasticity limit

The elastic model we use 1s valid only for small defor-
mations. Out of the elasticity domain, the material has
an elasto-plastic behavior. That 1s, the unconstrained
shape of the object is different before and after the
deformation and the material is irreversibly affected.
We need to avoid this behavior when planning and en-
sure that all deformations lie in the elasticity domain.
We explain now how to express the latter condition in
terms of the coefficients € and x of the strain vector.

Figure 4(c) shows how the curvature of the medium
surface implies compression and extension within the
thickness of the plate. Thus, for a curvature x and an
extension € = 0, the maximal strain occurs on the up-
per and lower surfaces. The straight line of undeformed
length dly = Rda is extended on the upper surface to
(R+h/2)da, where R = 1/ is the radius of curvature.
Thus, the extension rate is equal to xh/2 on the upper
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surface, and to —xh/2 on the lower surface. If ¢ is not
zero, the extension rate on the upper and lower surface
are equal to the sum of ¢ and these latter values. (This
is a first order approximation [38]).

Therefore, the condition under which all particles of
the plate remain in the elasticity domain is

h
|5| + §|X| < €maxz, (7)

where €4, 18 a constant depending on the material.

In our application, this constraint corresponds to
bounding from below the value of the bending param-
eter d

For most metals, &,,4 is very small,i.e. < 1073, Note
however that if the plate is very thin, a large curva-
ture can occur, as can be seen from equation (7) and
illustrated in Figure 5. As a final remark, let us point
out that to determine precisely the forces and strain
within a material, we would need high precision mod-
els (possibly finite elements with hundreds of points).
However, for the purposes of our work it is enough to
reasonably approximate the shape of the surface and
our model achieves this approximation.

4 Planning: Description of f-PRM

Our planning method, ~PRM, extends many of the
ideas of the probabilistic roadmap approach to plan-
ning [19, 20, 33]. The planner repeats a basic step
until a query is answered or until an allowed amount
of time has elapsed. The method can be seen as a sin-
gle shot method (answering a single user query), or as
a method that consists of a preprocessing and a query
processing phase. In both cases, the approach is incre-
mental: the roadmap constructed in the free part F' of
the configuration space can always be augmented by
adding more nodes and more paths, hopefully captur-
ing in greater detail the connectivity of F' and allowing
for a larger set of user queries to be answered.

Preprocessing: f-PRM constructs a roadmap R =
(V, E) in F by repeating the basic step shown in Fig-

ure 6. A few comments are 1n order.
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Preprocessing (basic step):

1. Generate a low-energy deformation uniformly at
random in F. Then generate N random configu-
rations having this deformation.

2. Update the graph R = (V, E) in which E consists
of connections found by a local planner. Each node
is tried for connection with its K closest neighbors
among all nodes generated in V.

3. Identify ”difficult” areas and refine sampling in
Con-

these areas by generating M more nodes.
nect the new nodes to R and update R.

Figure 6: Roadmap construction.

e At each basic step many configurations with the same
deformation are generated. This allows us to create
(and later search) for paths that do not unnecessarily
deform the plate.

e During step (2) each node ¢ is tried for connection
with its K closest neighbors among the nodes in V.
These neighbors may be of the same or different de-
formation as ¢. To find the neighbors, f-PRM uses a
distance metric D(-, ) that takes into account the rigid
transformations and deformations of the configurations
given as its arguments. Using K makes the running
time of the algorithm linear in the number of gener-
ated nodes. A simple and deterministic local planner
is used for the interconnections (see discussion in [20]).

e During step (3), which is also called the node en-
hancement step, f-PRM identifies difficult areas using
the following heuristic scheme: a configuration c is cho-
sen from V' with probability

Pr(c is selected) = w(e),

and a random configuration is generated in the neigh-
borhood of ¢. The weights w(-) used above are chosen
as in [19]

1 N
w(c):dc+1 /;dtJrl’

where d. 1s the degree of node ¢, that is the number of
connections that ¢ has with other nodes. To generate
a random node in the neighborhood of ¢, we proceed
as follows: we start a random walk from node ¢ and
perform a predefined number of reflections. For each
reflection, we generate a random direction and move in
that direction until the robot collides with an obstacle,
or a predefined number of steps have been executed.
The end configuration of the random walk is added
to R and is tried for connection with its neighboring
configurations of any deformation in R.

Query processing: given R, a starting configura-
tion s, and a goal configuration g, f-PRM attempts to
connect s and g to two close-by nodes s’ and ¢’ that
belong to the same connected component of R. If suc-
cessful, the component is searched for a sequence of
edges from s’ to g'.

5 Planning in the Presence of Manipu-
lation Constraints

Using the elasticity model for a thin plate specified
in Section 3, we proceed to define and solve planning
problems under the simple bending hypothesis. We first
outline our implementation choices for f-PRM and then
describe our experiments.

5.1 Implementation choices

Generation of random configurations: the rep-
resentation of a configuration is broken down into two
parts (a) the deformation and (b) the rigid body trans-
formation. The deformation is specified by the coordi-
nates of the control points in the reference frame Fa
of the load-free configuration. The rigid body transfor-
mation is given by a translation and a rotation vector.
Decoupling deformations and rigid body transforma-
tions allows using the same shape at different positions
in the workspace and facilitates collision checking as
discussed below.

In the case of simple bending it is enough to specify
d € [dmin, L] to obtain a deformation. In our current
implementation, we discretize the interval of possible
values of d into 200 different values. For each value, we



precompute the corresponding deformation of the pro-
file curve by minimizing the elastic energy. The surface
is obtained from the profile curve as specified in Sec-
tion 3.2. We choose a deformation randomly among the
200 generated off-line. A random rigid body transfor-
mation is applied to the deformation. The discretiza-
tion of d was done to speed up computations and is by
no means restrictive.

Collision checking: collision checking is imple-
mented with the RAPID library [24]. This library
takes as input collections of triangles describing the
environment and the moving object. In our implemen-
tation, the plate is approximated by a grid of points
evenly sampled across the surface. These points de-
fine triangles that are used by RAPID. The obstacles
are also decomposed into triangle soups. Once an in-
ternal model of the surface and a model of the obsta-
cles have been created by RAPID, a configuration can
be queried for collision by specifying a rigid transfor-
mation for both models. The creation of an internal
model of the surface is expensive compared to the ac-
tual collision checks. By keeping the shape of the sur-
face separate from its location in the workspace, the
internal model for any deformation can be built once
and reused, speeding up collision checking.

Distance measure: let ¢q,cs be two configurations
of the surface. Let P/*, P;/? denote the positions of
their control points, s1,ss, the translation vectors of
their rigid transformations and # the rotation angle to
obtain ¢y from ¢;. The distance D of ¢; and ¢y is given

by
D(er, ea) = ||s1 = sal| + 0llmaz + maz; {|| P — P[]}

In the above, l,,,4, denotes half of the diagonal length
of the undeformed plate. This term approximates the
greatest extent of the surface (see [4] for handling ro-
tation).

Local planner: to connect ¢; and ¢y the local plan-
ner first finds the axis of rotation and angle of rota-
tion needed to get from one configuration to the other.
Then a path is constructed by linear interpolation of

the translation and rotation vector between ¢; and cs.
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(6)

Figure 7: Ezperiment with a surface that can only bend.

Subsequently, if the deformations of ¢; and ¢y are dif-
ferent, a linear interpolation on the parameter d is used
to obtain deformation ¢y from that of ¢;. Intermediate
deformations are read from our precomputed array.

5.2 Experimental results

Our code is written in C++ and all the timing results
reported here were obtained on an SGI R10000. Our
implementation follows closely the description in Sec-
tion 4 with the exception that enhancement is started
after a few basic steps; the number of nodes generated
in each basic step is small and our heuristic scheme for
enhancement is not very efficient with small roadmaps.
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Figure 7 shows snapshots along a path computed by
f-PRM for a 10 control point Bézier curve. The pa-
rameters for the basic step of -PRM are N = 100,
M = 100, and K = 18. We assume that we are treat-
ing a metal sheet plate and we bound d,,;;, to reflect its
elasticity limits. During enhancement the random walk
consists of a maximum of 10 reflections, each of which
can be 100 steps long. We run f~PRM 10 different
times changing the value of the random seed generator.
The planner reliably solved the problem all 10 times
with an average running time of 3.3 min. Note that we
solve a considerably difficult problem. The polyhedral
obstacle which obstructs the rectangular hole of the
workspace in Figure 7 extends beyond the hole (from
below and above). This fact restricts the deformations
with which the surface can go through the hole. An-
other example is shown in Figure 1. Without changing
any of the parameters of our planner we can solve that
problem with an average running time of 1.2 min. The
precomputation of the array of deformations took 22
min.

6 Planning in the Absence of Manipu-
lation Constraints

We now discuss the application of f-PRM to a case
with less restrictive manipulation constraints and en-
ergy model. In particular we assume that each control
point of the Bézier surface patch is free to move by
itself and the energy model simply disallows extensive
shear and bending of the surface. We use this example
to illustrate the capabilities of our framework by solv-
ing high dimensional planning problems. A detailed
discussion can be found in [18]. Note that this line of
work may be relevant in computer generated anima-
tion. The energy model can be used to make the mo-
tion look “natural” and the specified constraints would
typically be different from manipulation constraints.

6.1 Implementation choices

We use a 3 x 3 Bézier surface patch for our experiments.
To specify a deformation, we need to specify the coor-
dinates of the control points of the surface. Thus this

problem has 27 dof. We describe below those imple-
mentation choices that are different from the ones of
the elastic surface that can only bend.

Energy model: the energy model excludes deforma-
tions that correspond to unreasonable bending, exten-
sion, or shear of the surface. We divide the energy into
three parts Ecyry, Farea, Eshear to reflect energy due to
curvature, area variation, and shear. These terms are
computed on a 10 x 10 grid of points sampled evenly
across the surface. Let z;;,¢,7 =1,...,10 be the grid

Co
i)
ing grid points at the load-free shape for referring to

points, and let xz:%, 4,7 = 1,...,10 be the correspond-

properties of that shape. Then

Ecurv =  max;; {sin2(angle((x¢] - 17”—1), (17€J+1 - x,])))}
Farea = maxi{zj |zij — Tij41] — Z] |xf]° — xf‘])_H }
Fanear = mazi, {cos® (angle(zis1 5 — 15)s (74541 — 203)))}-

Once the energy is computed, each component is com-
pared to a predefined cutoff value.
Generation of random configurations: a defor-
mation is specified by the position of each control point
F;;. To avoid generating huge deformations, we dis-
place each of the F;;’s of the load free configuration
by a vector whose magnitude is bounded and whose
orientation is chosen at random. This idea is explored
further in [18]. Again, random rigid transformations
can be applied to a deformation to obtain random con-
figurations.
Local planner: the local planner simultaneously in-
terpolates the rigid transformations and deformations
of the corresponding configurations. For the deforma-
tion, the position of each control point is interpolated
in R3.

6.2 Experimental results

We run f-PRM 10 different times changing the value
of the random seed generator for the workspace of Fig-
ure 8. The workspace and surface dimensions are the
same as the ones used in Section 5.2. The parameters of
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Figure 8: Snapshots along a path computed by f-PRM.

f-PRM are kept the same as in Section 5.2. The plan-
ner reliably solved the unconstrained problem all 10
times with an average time of 4.7 hours. Note that we
now solve a 27-dof problem so we expect to have much
higher running times than those of Section 5.2. Keep-
ing the parameters of the planner the same, we find
that the average running time for solving the problem
of Figure 1is 9.1 min, further emphasizing the difficulty
of the example in Figure 8.

7 Discussion

This paper investigates the problem of path planning
for a thin elastic metal plate. We used the Bézier rep-
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resentation for describing the geometry of the plate
and provided a model for its elastic energy. We com-
pute the shape of the plate with respect to a set of
grasping constraints by minimizing the elastic energy
of the deformation. A probabilistic roadmap approach
is developed to compute paths for the plate. Our
experiments show that our new planner, -PRM, can
successfully solve high-dimensional problems, but can
also deal with highly constrained and realistic models
when the deformation is controlled by manipulation
constraints. We also extended our framework to the
case of less restrictive energy models and manipulation
constraints that typically require solving higher dimen-
sional planning problems.

Our work 1s a first step in the direction of considering
object flexibility in general, and elasticity in particu-
lar, during planning. It raises a number of interesting
issues which we expect to address in the future. These
include: studying different geometric representations
for the flexible objects, allowing for more complex ma-
nipulation constraints, developing efficient strategies
for planning local paths, and devising methods that
smooth computed paths or possibly relax the energy of
the object along these paths.
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Appendix: Elasticity of a Plate

Elasticity has been studied extensively in mechan-
ics [6, 38]. This theory is based on the existence of
a potential energy function per unit of volume which
depends on the temperature and deformation fields

L. Kavraki et al.

within the material. An elastic body can be deformed
by external causes such as grasping which imposes con-
straints on the position of a subset of points of the
body. The deformation field induced minimizes the
elastic potential energy over the whole body.

For materials such as metals, the deformation field
has to remain small to ensure the reversibility of the
deformation. In this case, the linear elastic model is
generally used. This model asserts that the elastic en-
ergy 1s quadratic with respect to the strain field of a
deformation.

In the case of a thin plate, the elastic energy can be
approximated by the deformation of the medium sur-
face of the plate, ignoring for a moment the thickness
of the plate. Then, the strain field, in analogy with
the strain vector in the 1D case (see Section 3.3), has
3 components measuring planar strain and 3 compo-
nents measuring curvature. Let us parameterize the
undeformed surface as follows

So(z1, 22) = 21w + xoWs,

where (W, Wa, Ws) is an orthonormal basis. Let us also
consider a deformation for which the point of coordi-
nates (21, 1) is transported to S(z1, z2). The temper-
ature is assumed to be constant. All the computations
needed to establish the results below can be found in

[38].
A. Strain field of the plate

The strain field of a deformation of a surface is defined,
at each point of the surface, by six coefficients: three of
these coefficients account for planar deformation while
three account for curvature.

Planar strain coefficients The planar strain coeffi-
cients are computed by comparing the tangent vectors
to the undeformed surface with those of the deformed

one. Let us use the following notation for these tangent

vectors
0S(z1, 22
tl(-rl,IQ) = (;752137)
1
to(z1,20) = 735(251,252)

81‘2
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88y (x ,
t?(fﬁl,l‘z) = 70(3;;1 z2)
1
it
tg(l‘l,$2) = 0(3+127I2)

The strain coefficients correspond to the difference be-
tween the inner products of the tangent vectors before
and after deformation, as follows

€11 = %(tl'tl_t?'t?): St -t —1)
1

en= glta-ta—t) 1)) = S(ta-ta—1)

era= 3ty -ty —t]-19) = S(ty-1a)

e11 and esq are called the extension coefficients in the
xz1 and x5 directions, whereas eq9 is the shear between
these directions.

Notice that the coefficient ¢ of the one-dimensional
deformation of Section 3 is a first order approximation
of the real extension coefficient in the u direction.

Curvature coefficients To express the curvature,
we need the normalized tangent and normal vectors to

the deformed surface

t = t/|tl|
ty = taf|[ts]|
n = ({1 X{2)/||{1 X{2||.

The curvature of the deformed surface can be repre-
sented by the three following coefficients

10,
X111 = mad—mln
1 o
X22 = mad—szn
1 Ot 1 ot
2= e adey T it 9dzs

B. Elastic energy of the plate

We can group the coefficients defined above in two ma-
trices to simplify the expression of the elastic energy

_ < €11 €12 ) _ ( X111 X12 )
65 - bl X - -
€12 €22 X12  X22

These matrices represent in fact the planar strain ten-
sor and the curvature tensor. With this notation, the
elastic energy is the sum of two terms:

Vs(es, x) = 5 (es) + ¥ (x),
with

. _ Eh(1- v)tr(es?) + v(tres)?
Vi) = Ty

and

Xl ER? (1 —v)tr(x?) + v(try)?
L 7 S [ s

The elastic energy is thus quadratic with respect to
the strain field. Moreover, we can see from the last
two equations that since h is assumed to be small, the
energy deformation due to the curvature is far smaller
than the energy due to extension and shear within the
tangent plane of the surface. This fact explains why it
is easier to bend a thin plate than to extend it.



