IEEFE Transactions on Robotics and Automation, 11(3), 1995, 408-413

Computation of Configuration-Space Obstacles

Using the Fast Fourier Transform

Lydia Kavraki
kavraki@cs.stanford.edu

Robotics Laboratory, Department of Computer Science,

Stanford University, Stanford, CA 94305, USA

Abstract

This paper presents a new method for computing the configuration-space
map of obstacles that is used in motion-planning algorithms. The method de-
rives from the observation that, when the robot is a rigid object that can only
translate, the configuration space is a convolution of the workspace and the
robot. This convolution is computed with the use of the Fast Fourier Trans-
form (FFT) algorithm. The method is particularly promising for workspaces
with many and/or complicated obstacles, or when the shape of the robot is
not simple. It is an inherently parallel method that can significantly benefit

from existing experience and hardware on the FF'T.

Keywords: Configuration Space, Fast Fourier Transform, Collision Checking, Robot Mo-

tion Planning

1. Introduction

The problem of planning the motion of a robot among static obstacles has been
recently approached by restricting the configuration space (C-space) of the robot to
a discrete space, where each degree of freedom can only assume a finite number of
values [2]. In this approach, it can be very useful to precompute and store a C-space
bitmap that explicitly represents the free part of the C-space (the 0’s) versus the
part that gives rise to collision with an obstacle (the 1’s). This bitmap reduces
collision checking to an O(1) operation [11]. In fact, there is a variety of other ways
a precomputed C-space bitmap can be exploited by a planner. For example, in [14]
it is used by a wavefront propagation algorithm to numerically compute a local-
minima-free potential field with a single minimum at the goal. Another possible
use of the bitmap is to generate a more concise representation of the free space
by grouping adjacent free configurations into hyperparallelepipeds of various sizes

(‘approximate cell decomposition” approach to path planning [4, 27]).

We describe below a new method for computing the C-space bitmap. In its most
basic form, it applies to the case where the robot is an n-dimensional (n = 2 or
n = 3) rigid object translating in an n-dimensional workspace among obstacles. The
C-space, which in this case is also n-dimensional, can be regarded as a convolution
of the workspace and the robot [6]. We compute this convolution via a Fast Fourier
Transform (FFT) algorithm. The running time of our algorithm depends only on
the resolution of the discretization used. For a fixed resolution it is independent of
the complexity and the shape of the robot and the obstacles. Moreover, the method
can benefit directly from specific hardware developed for the FFT algorithm.

The same method can be extended to a robot that can both translate and rotate
in the plane by discretizing the range of orientations of the robot and building a
three-dimensional C-space bitmap slice by slice. In theory, this extension also applies
to arobot that translates and rotates in three dimensions, but then the dimension (6)
of the C-space makes the construction of an explicit bitmap unrealistic. However,

if the rotation is restricted to occur about a single axis, a relatively coarse four-

dimensional bitmap can be constructed as a set of three-dimensional slices, each
computed at a fixed orientation of the robot. If the robot is a planar set of K rigid
bodies connected by prismatic and revolute joints, the method can be used to build
K bitmaps, each representing the C-space of one of the bodies as if it were free
to translate and rotate. In the context of the planning approach described in [2],
these K bitmaps can be used to compute whether a configuration of the robot is

collision-free or not in O(K) time.

Although there has already been considerable research and results in C-space
computation, fast computation of C-space obstacles remains an important issue.
This is in particular the case when the environment changes dynamically. We believe
that C-space computation is basic enough in robotics (and other domains) to make it
benefit from parallel or specific hardware implementations. In that respect, bitmap
representations seem to be very suitable. An analogy can be drawn with some basic
graphics problems (e.g., hidden surface elimination), which admit a relatively time
consuming analytic solution but are prone to efficient hardware implementation

using discretized representations.

This paper is organized as follows. In Section 2 a survey of previous related
work is given. In Section 3 we show that the C-space bitmap can be obtained by a
convolution of the workspace and the robot. In Section 4 we discuss the conditions
that make possible the use of the FFT algorithm for the efficient calculation of con-
volution. Then, in Section 5, we show how our problem can match these conditions
and we give an algorithm for computing the C-space using the FFT. In Section 6 we
present an experimental evaluation of the algorithm and in Section 7 we discuss the

possibility of hardware and parallel implementations using recent work on the FFT.

2. Survey of Existing Algorithms

Let us first introduce some notation. The robot is denoted by A. A is a rigid body

and moves in the workspace W C R", with n = 2 or n = 3. Let B denote one of

the obstacles in W, and C the C-space of A [16]. The subset of W occupied by A
at configuration ¢ is denoted by A(gq). That is A(q) = A+q¢={z+q:2 € A}. The
obstacle B in W maps into C to the region CB = {q € C | A(q) N B # @} , which is
called a C-obstacle.

Many proposed algorithms for computing the C-obstacles for A deal with the case
where A can only translate and restrict the shape of the robot and the obstacles.

We begin our survey with these algorithms.

The case where A and B are convex polygons has been studied in [15, 17] and an
optimal algorithm has been proposed by Lozano-Pérez [17] and Guibas [6]. They
obtain the vertices of the also convex CB in O(n4+ng) time, where n4 and ng denote
the number of vertices of A and B respectively. In the case where A and B are non-
convex polygons, Sharir [24] gave an algorithm which computes the boundary of
CB in O(n%nklog(nang)) time. In the case where A and B are generalized convex
polygons, i.e., regions bounded by straight line segments or circular arcs, Laumond
[12] showed that CB can be computed in O(na + ng) time. When A and B are
locally non-convex generalized polygons a decomposition of A and B into convex
generalized polygons yields an O(n%n§log(nang)) algorithm [12]. For A or B not
locally non-convex, the algorithm has O((nang+-c)log(nang)) time complexity, where
¢ is O(n%)n%) in the worst case [10]. The case where A and B are convex polyhedra
has been studied in [16, 17]. The best known algorithm has been given by Guibas
and Seidel [7]. It constructs the boundary of CB in O(n4+ ng+c) time, where ¢ is in
the worst case O(n4ng). Finally, the method of Avnaim and Boissonnat computes

the boundary of CB in O(n3n}log(nang)) time, when A and B are any polyhedra.'
The above algorithms analytically compute the boundary of the C-obstacle for

each connected workspace obstacle and then take the union of all constructed bound-
aries to find the boundary of all C-obstacles. Path planners operating in discretized

C-spaces feed the results produced by these methods to routines that build the C-

!This method is an adaptation of the algorithm in [1] which constructs an exact representation

of a C-obstacle in the case where A can translate and rotate in the plane.

space bitmap. For example, Latombe [11] and Lengyel et al. [14] used the O(n4+ng)
algorithm of Lozano-Pérez and Guibas to compute the vertices of the C-obstacles
and then filled the C-obstacles with a raster graphics polygon-filling routine. Paths

were computed in the produced bitmap.

Other methods for computing C-space maps that are closer to the spirit of this
paper have been proposed. Newman and Branicky [19] identify ‘elemental building
blocks’ (shapes) that are easily transformed from the workspace to the C-space.
They store the C-space transforms of these shapes, frequently as bitmaps, and com-
bine them to obtain the C-space bitmaps for complex shapes. They report exper-
iments where the running time of their algorithm is very good. Lozano-Pérez and
O’Donnell [18] implemented an algorithm on the Connection Machine that computes
a family of C-space bitmaps which are then combined to construct bitmaps for more
complex workspace objects and a six-degree-of-freedom robot. An algorithm given
by Dehne, Hassenklover and Sack [5] computes C-space bitmaps for arbitrary obsta-
cles but ‘rectilinearly’ convex robots on a N x N mesh of processors in O(N) time.
The above bound is generalized in our paper to non-convex robots. This improve-

ment is also reported in similar work done independently by Schwarzkopf [23].

There are some inherent differences between the algorithms that analytically
compute the C-obstacles and the algorithms that construct bitmaps for the C-space.
The time complexity of the first is measured in terms of the number of vertices of
the robot and the obstacles. On the other hand, the running time of the bitmap
algorithms is a function of the size of the constructed bitmap. Typically, robots and
obstacles with many vertices demand a high resolution of discretization for describ-
ing their shapes with sufficient accuracy. Hence, there is a relationship between the

two complexity measures, but this relationship is not well-defined.

In the next sections we describe a method for computing C-space maps whose
only inputs are a bitmap of the workspace and an algorithm to draw the robot on
that bitmap. The output is a C-space bitmap representing both the boundary and
the interior of the C-obstacles (1’s) and the free space (0’s). The running time of

our method is independent of the number and the shape of the obstacles in the

workspace W, and depends only on the resolution of discretization.

3. Configuration Space as a Convolution

In this section, we explain in two dimensions how the C-space can be obtained as a
convolution of the workspace and the translating robot. The same discussion also
applies in three dimensions.

Consider a workspace W = [a,b] x [e,d] C R%. We discretize W into a N x N
array W2, where N is large enough to represent the obstacles in W with the desired
accuracy. We define

(b—a)
N

(b—a)
N

(d—c)
N

(d—c)
N

cell; ; = [a+i ca+(i+1) | x[c+ 7 et (G+1)]

where 7,7 € § ={0,..., N—1}, If there is an obstacle anywhere in the cell cell; ; we
let W(i,j) =1, else W(i,7) = 0. The bitmap array W can easily be constructed if
the obstacles are input as a collection of algebraic shapes, e.g., polygons represented
by their vertices. When the data about the obstacles is obtained through sensing,
the bitmap representation may be more straightforward to obtain than an algebraic

representation.

The C-space C is the set of all triples (z,,y.,0,), where (z,,y,) are the coordinates
of a fixed reference point on the robot, p4, and 8, is the orientation of the robot. In
general the parameters z,, y,, 0, can assume any real value in [a, b] X [¢, d] X [0, 27]. We
discretize the workspace and the orientations of the robot and define z = a + iib_Tal,
y=c —I—jﬁ%l and 6 = k27, where 4,5,k € S. The C-space can then be stored as a

N x N x N binary array.’

The robot A can be approximated by a set of points (7,7), i,j € S, which are

drawn by a simple procedure given the orientation 8 of the robot and the coordinates

?In general, W is discretized into a N X M array. The fact that we use a square array is only
for simplifying our presentation. It has no particular importance in our method.

3Footnote 2 applies for # as well.

(z,y) of pa. For each fixed value of (z,y,8) we consider the N x N binary array A, g

where only the points that belong to the robot are marked with 1’s.
With the conventions of the previous paragraphs, a point (z,y,8) in the (discrete)
C-space is legal (free) if and only if

N-1

Clz,y,0)= Y W(i,j)Awys(ij) = 0.
2,7=0
We observe that whenever 6 is fixed and z,y are varying, the various bitmaps A, , g
are all translations of each other, and in particular of A(ggg). Then

C(2,9,0) = LW (i) Awon(i = .5 = y).
Y

For the moment we will ignore any complication that might arise concerning the
range of the indices i,j. We can assume that W and Aggg) are infinite in all
directions and padded with zeros (which indicate free space and do not affect the
above sum). What we have shown is that the array C(-,-,8) is the convolution of

the arrays W and Aj, where
Ay(i,5) = Awon(—1,—7).

Indeed, the convolution of two arrays @ and T is defined as (@ x T)(z,y) =
> Qi)T (x — i,y — j). Hence, C(-,-,0) = W x Aj.

4. Computation of Convolution Via FFT

The convolution of two functions f and g can be computed by taking the Fourier
Transform (FT) of the two functions, multiplying the two transforms pointwise, and
then taking the inverse FT of the product. This is asserted by the Convolution

Theorem given below:

Convolution Theorem: If functions f and g defined on R are integrable then,
Fxg(z) = f(2)j(z), where b denotes the FT of function h.

However, calculating the convolution with the use of the Convolution Theorem
is of computational interest only when the FFT algorithm can be applied. The FFT
algorithm can be used when the functions f and g are periodic with the same period,
or what amounts to the same thing, when they are defined on a ‘cyclic’ space. The

convolution and the FT are then defined as follows for the two-dimensional case [21]:
Definition 1: The convolution of two functions f and g defined on the set 5%, where
5 =1{0,1,...,N—1}, is the function (f*g)(z,y) = ¥ ies f(1,5)9(x — i,y — j) on S?,
where the arithmetic on the indices ts done modulo N .
Definition 2: The FT of f on 5% is the function f(m,y) =Y ikes (4, k)CImk on
5%, where ¢ = exp(27i/N).

The Convolution Theorem now holds for f and g defined as above. When this

theorem is used, the convolution computed is the one given in Definition 1.

The classic FFT algorithm computes the one-dimensional FT of functions on 5,
as well as its inverse (which is again defined on), in time O(Nlog N). The two-
dimensional FT can be computed by first taking the one-dimensional FT of all rows
of the array, which is a function on 2, storing the results in the rows themselves, and
then taking the FT of all columns and putting the result back in the columns. The
time needed to compute a two-dimensional FT is O(N?log N). Analogous definitions

hold for the k-dimensional FT whose computation takes O(N*log N), when £ is fixed.

5. Computation of Configuration Space

Basic Algorithm. Let us now consider the problem of computing the convolution
of the workspace bitmap W and the robot map Aj. We could proceed by using the
definition of the convolution which directly yields an O(N*) time procedure. Rather,
we wish to use the FFT results and compute this convolution in O(N?log N) time.
However, the functions W and Aj involved in the convolution are not ‘cyclic’ as is
required by Definition 1. We eliminate this difficulty by simply setting W(i,) to

1 on the boundary of $2. By doing so, we make sure that the robot cannot ‘wrap

around’ the workspace without a collision.

The actual running time of the proposed method critically depends on how fast
we can compute the discrete FFT of N points. The FFT algorithm is a very
popular algorithm. Optimized implementations of this algorithm are available on
virtually every computer. Many FFT implementations have been tailored to exploit
the pipelines of RISC processors and achieve close to peak performance. As dis-

cussed in Section 7, FFT hardware can reduce the running time of our method.

Algorithm for a translating and rotating planar robot. In Figure 1 we give
the algorithm that computes the C-space bitmap for a robot A that can translate
and rotate in the plane. As before, z and y are the coordinates of a fixed reference
point (p4) of the robot and 6 is the orientation of the robot; N is the resolution of
the discretization on the workspace bitmap W. If N is also the number of the desired

orientations of the robot, a N x N x N C-space bitmap CSPACE is constructed.?

If we have a good way to draw the robot in the bitmap for every new orientation,
the running time of the algorithm is not significantly affected by the shape of the
robot. Its time complexity is essentially O(N3log N). Robot drawing can often be
simplified by drawing only the boundary of the robot. Then the region filled by 1’s
in the CSPACE bitmap is only a subset of the true C-obstacles, but it contains the
boundary of the latter. For planners like the one described in [2], this is sufficient to

prevent collision because the robot is never allowed to cross a C-obstacle boundary.

Algorithm for a translating robot in three dimensions Although we focused
our previous discussion on a robot moving in two dimensions, the same method ap-
plies in three dimensions. If A can only translate, a three-dimensional C-space can
be constructed in O(N3log N) time, by taking the three-dimensional convolution of
the workspace W and the robot Aj,,. If rotation is allowed to occur about a single

axis, say 6, a four dimensional bitmap can be constructed by an algorithm similar to

4Even when the number of desirable orientations is chosen different from N, it is expected to

be O(N).

1 Put W(i,7) = 1 when either i or jis 0 or N — 1,
or an obstacle is present.
Compute W, the 2D FT of W.
For all desired values of 6:
begin
Construct Aj.
Compute II’@, the 2D FT of Aj.
Let X = W - %T’e (pointwise multiplication).
Compute Y as the inverse FT of X.
Let CSPACE(z,y,0) =1 if and only if |Y(z,y)| = 1.

O o0 =1 O Ut = W N

[
o

end

Figure 1: Computation of C-space map for a rigid robot that can translate and

rotate in the plane.

the one given in Figure 1. The algorithm then has a time complexity O(N*log N),
if N is the number of desirable values of #. The same principle applies if rotation is
allowed along the other axes. However, if a reasonable resolution of discretization
is desired, the size of the C-space bitmap becomes very large and it is not realistic

to store it in the memory of current workstations.

6. Experimental Evaluation

We have implemented® the FFT-based algorithm of Figure 1. We have conducted
a series of experiments aimed at comparing its performance with (i) an implemen-

tation of the O(n4 + np)-time algorithm of Lozano-Pérez [17] and Guibas [6] and

50ur implementation follows the description in Figure 1, except for a minor change to compen-
sate for possible arithmetic errors. We set CSPACE(z,y,60) = 1 when |Y (z,y)| > THRESH-
OLD, instead of when |Y(z,y)| = 1 (line 9). In our experiments THRESHOLD was set to 0.9.

10

(ii) an optimized implementation of the O(N*)-time algorithm that computes the
convolution of the workspace and the robot in a straightforward way. All algorithms

in this section are implemented in C and run on a DEC 5000 workstation.

Comparison with the linear O(n 4 + ng) algorithm. As discussed in Section 2,
the input and output data are different for algorithms that compute C-obstacles (in
this case the O(n4 + ng) algorithm) and algorithms that compute C-space bitmaps
(in this case the FFT-based algorithm). An analytic comparison between these
algorithms does not seem possible. We tried to establish a reasonable framework
for an experimental comparison. Qur aim is to provide orders of magnitude for the
running times of the FFT-based algorithm and the O(n_4 + np) algorithm, which has

been used in many motion planners [11, 14].

The input of the implemented FFT-based algorithm is an N x N bitmap W of
the workspace. The robot is defined as a polygon. Its bitmap representation is
not precomputed; the algorithm computes the bitmap representation of the robot’s
boundary for each of the N orientations of the robot that we considered. The output
is an N x N x N bitmap CSPACE representing the C-space.

The input of the implemented linear algorithm is a collection of convex polygons
representing the robot and another collection of polygons representing the workspace
obstacles. Hence, the decomposition of non-convex polygons into convex ones is
not part of the running times given below. The output of the linear algorithm is
entered into a routine mapping this boundary in a C-space bitmap of the same
resolution as the one built by the FFT-based algorithm. This bitmap is the output
of the algorithm. When we have an analytic description of the C-obstacles, we can
construct a CSPACE bitmap of high resolution with accuracy. In the FFT-based
algorithm, we first project the obstacles and the robot in the workspace bitmap
and then compute a CSPACE bitmap of the same resolution. Thus, in order to
obtain an accurate C-space bitmap, we have to work with a resolution high enough
to represent the shape of the obstacles with accuracy. In our experiments we made

sure that the CSPACE bitmaps produced by the algorithms we compare were almost

11

NAS

Figure 2: Two-dimensional workspace with 150 convex polygon obstacles

the same.

Figure 2 shows the workspace (150 convex polygonal obstacles) and Figure 3
shows the three robots we used in one series of experiments. The larger dimension of
the robots is approximately 1/10 of the dimension of the workspace. The workspace

bitmap W was represented as a 128 x 128 array and we considered 128 orientations

for the robot. Hence, the algorithms built a 128 x 128 x 128 bitmap CSPACE.

e For the convex robot of Figure 3(a), the FFT-based algorithm took 90 seconds
to compute CSPACE and the linear algorithm 11 seconds.

e For the robot of Figure 3(b), which is non-convex, the FFT-based algorithm

took 91 seconds and the linear algorithm 22 seconds.

e For the robot shown in Figure 3(c), which has four convex parts, the FFT-

based algorithm took 91 seconds and the linear algorithm 32 seconds.

Experiments show clearly that the linear algorithm is preferable for simple polyg-
onal robots and workspaces. However, as the complexity of the environment in-

creases, our FFT-based algorithm becomes more and more comparable. One could

12

— b =

@ (b) ©

Figure 3: Polygonal robots

Size of robot bitmap || Bitwise operations (sec)
55X 5D 20
10 x 10 39
20 x 20 77
30 x 30 115
40 x 40 199

Table 1: Direct convolution timings with a 128 x 128 workspace

imagine more complex environments where the gap in the running times of the

FFT-based and the linear algorithm will be reduced or even inverted.

We emphasize that we ran our experiments with algorithms implemented in
software on a conventional single-processor architecture. A hardware or parallel
implementation of the FFT algorithm would certainly lower the ‘break-even’ com-

plexity where the FFT-based algorithm becomes preferable to the linear algorithm.

Comparison with the direct O(N*) convolution algorithm. Although the
FFT-based algorithm has an asymptotically better running time then the direct
algorithm, the latter requires only a small bitmap for the robot and can be imple-

mented using (fast) bitwise operations, instead of (slow) multiplications.

The input and the output of the implemented direct convolution algorithm are
exactly the same as those of the FFT-based algorithm. The direct algorithm aug-
ments the workspace bitmap and pads it with zeros to avoid problems at boundary
configurations when the convolution is computed. Table 1 summarizes experimental
results for a 128 x 128 workspace. The FFT-based algorithm computes the bitmap
CSPACE in approximately 90 seconds. Column 2 of Table 1 shows the time required

13

to compute CSPACE for different sizes of the bitmap of the robot when bitwise op-
erations are used. It is clear that the direct approach is preferable when the size of
the robot is small. Bitwise operations are implemented in hardware in the machine

we used and take at most a couple of machine cycles.

7. Hardware and Parallel Implementations

A hardware implementation of the basic FFT-based method for computing C-space
maps is possible because of the uniformity of the calculations involved in the algo-
rithm. Such an implementation may substantially reduce the running time of the
algorithm. Even if the whole method is not implemented in hardware, specialized
FFT hardware [3] can be used. The latter is widely available and has been used for

years in signal processing and other applications.

Hardware implementations are also possible for the direct convolution algorithm
and cannot be regarded as an advantage of the FFT-based algorithm only. This
issue has been studied in the context of the morphological operations used in image
processing [8]. The computation of these operations requires a small bitmap, referred
to as a kernel, to be moved over the original image. Many specialized architectures
have been proposed [22, 20| to efficiently perform these operations. However, these
architectures achieve high performance for operations with large images and small
kernels. Typical kernel sizes for a 512 x 512 image are 3 x 3 or 5 x 5. In our problem,

we might not want to restrict ourselves to such small robots.®

As far as our basic algorithm is concerned, its parallel implementations can be
based on existing parallel implementations of the FFT. Let us mention some existing
results. Leighton [13] showed that the N-point discrete FFT can be implemented
in log N steps on an N(log N + 1)-node butterfly or an N-node hypercube. It can
also be implemented in O(log N) steps on an N-node butterfly [13]. Issues related to

SEven in AVG applications, path planning frequently has to be done locally, since more global

planning often makes use of higher-level symbolic maps defining intermediate goals.

14

the implementation of the FFT on hypercubes are discussed in [25]. On an N x N
mesh of processors, it is easy to implement the (two-dimensional) FT of a function
defined on N? points in O(N) time [13]. Then our basic algorithm will itself have
a complexity of O(N). This is asymptotically optimal for the problem, and is an
improvement over the algorithm of Dehne, Hassenklover and Sack [5] which can
only deal with ‘rectilinear’ robots. For the Connection Machine there exist many
implementations of the FFT [9, 26]. On a shared memory bus-based multiprocessor
with few processors (8) an implementation of the multidimensional FFT exhibits a

speedup close to linear with the number of processors used.”

8. Conclusion

We presented an FFT-based algorithm to compute the C-space map used by several
path planners. The algorithm is based on the observation that the C-space map is the
convolution of the workspace and the robot and applies to obstacles and robots of any
shape input as bitmaps. The FFT-based method produces a bitmap representation
of the C-space that is directly exploitable by potential field based path planners such
as those described in [2, 14]. In particular, this bitmap allows collision checking to
be done in O(1) time for a rigid robot and in O(K) time for a robot with K rigid
parts. For a fixed discretization, the running time of our algorithm is independent

of the number and the shape of the obstacles in the workspace.

The FFT-based method was presented in the case of a planar translating robot.
Rotation is not directly handled by the method and requires slice by slice construc-
tion of the C-space bitmap. The method also applies to a three-dimensional robot
that can only translate. Furthermore, it can be used when the robot is a planar

articulated linkage, by building a three-dimensional C-space for each link.

“The almost linear speedup is justified by the way the k-dimensional FFT is computed. For
example, for k=2, we first take the FFT of the rows and then the FFT of the columns. We can

assign different rows/columns to different processors. The partial computations are independent.

15

Our method depends highly on our ability to perform the FFT. When imple-
mented in software on a single-processor computer, its running time can be a dis-
advantage, especially when the obstacles and the robot are simple. However, when
the combined complexity of the obstacles and the robot is high, the FFT-based
method becomes advantageous. It can also benefit from existing special-purpose
hardware. Implementations are possible on a wide variety of parallel architectures,
by exploiting recent work done on parallel implementations of the FFT. The use of
specific hardware or parallel architectures can drastically reduce the running time
of our algorithm, making it compare even more favorably to previous algorithms for

computing C-space maps.

Acknowledgments: This research was partially funded by DARPA contract DAAA21-
89-C0002. An earlier version of this work appeared in the IEEE Conference on Robotics
and Automation, 1993. The author thanks T. Lastennet for providing the code of the
linear-time algorithm for computing C-space maps and J.-C. Latombe for his valuable
comments and reading of this paper. Finally, the comments of the anonymous reviewers

of this paper were very helpful.

References

[1] F. Avnaim, J.D. Boissonnat, Polygon Placement Under Translation and Rota-
tion, Technical Report No. 890, INRIA, 1988.

[2] J. Barraquand, J.C. Latombe, “Robot Motion Planning: A Distributed Repre-
sentation Approach,” The Int. J. of Robotics Research, The MIT Press, Cam-
bridge, MA, 10(6), December 1991, 628-649.

[3] G. Bilardi, S. Hornick, M. Sarrafradeh, “Optimal VLSI Architectures for Multi-
dimensional DFT,” ACM Comp. Architecture News, 19(1), March 1991, 45-52.

[4] R.A. Brooks, T. Lozano-Pérez, “A Subdivision Algorithm in Configuration
Space for Findpath with Rotation,” IEEFE Tr. on Syst., Man, and Cyber., 15(2),

16

[5]

[6]

[11]

[12]

[15]

1985, 224-233.

F. Dehne, A.L. Hassenklover, J.R. Sack, “Computing the configuration space
for a robot on a mesh-of-processors,” Parallel Comput., 12(2), 1989, 221-231.

L. Guibas, .. Ramshaw, J. Stolfi, “A Kinetic Framework for Computational
Geometry,” Proc. of the IEEE Symp. on Found. of Computer Science , 1983,
100-111.

L. Guibas, R. Seidel, “Computing Convolution by Reciprocal Search,” Proc. of
the ACM Symp. on Computational Geometry , Yorktown Heights, NY, 1986,
90-99.

R. Haralick, L.. Shapiro, Computer and Robot Vision, Addison Wesley, 1992.

L. Johnsson, R. Krawitz, “Cooley-Tukey FFT on the Connection Machine”,
Parallel Computing (18), 1992, 1201-1221.

J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,
MA., 1991.

J.C.Latombe, “A Fast Path Planner for a Car-Like Indoor Mobile Robot,”
Proc. of the 9th Nat. Conf. on Artificial Intelligence, 1991, 659-665.

J.P. Laumond, “Obstacle Growing in a Non-Polygonal World,” Information
Processing Letters, 25(1), 1987, 41-50.

F. T. Leighton, Introduction to Parallel Algorithms and Architectures: arrays,
trees, hypercubes, Morgan Kaufmann Publishers Inc., Los Altos, CA, 1992.

J. Lengyel, M. Reichert, B.R. Donald, D. P. Greenberg, “Real-Time Robot
Motion Planning Using Rasterizing Computer Graphics Hardware,” Proc. of
SIGGRAPH’90, Dallas, TX, 1990, 327-335.

T. Lozano-Pérez, M. Wesley, “An algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles,” Communications of the ACM, 22(10), Oct 1979,
560-570.

17

[16]

[17]

[18]

[21]

[22]

23]

[24]

[25]

[26]

[27]

T. Lozano-Pérez, “Automatic Planning of Manipulator Transfer Movements,”

IEEE Tr. on Systems, Man, and Cybernetics, 11(10), 1981, 681-698.

T. Lozano-Pérez, “Spatial Planning: A Configuration Space Approach,” IKEF
Tr. on Computers, 32, 1983, 108-120.

T. Lozano-Pérez, P. O’Donnell, “Parallel Robot Mation Planning”, Proc. of the
IEEFE Int. Conf. on Robotics and Automation, April 1991, 1000-1007.

W. Newman, M. Branicky, “Real-Time Configuration Space Transforms for

Obstacle Avoidance,” The Int. J. of Robotics Research, 10(6), 1991, 650-667.

W. Pratt, “A Pipeline Architecture for Image Processing and Analysis,” I[FKE
Comp. Arch. for Pat. Anal. and Image Database Management, Miami, 1985,
516-520.

R. Ramirez, The FF'T Fundamentals and Concepts, Prentice Hall, Englewood
Cliffs, NJ, 1985.

A.P. Reeves, “Parallel Computer Architectures for Image Processing,” Com-

puter Vision, Graphics and Image Processing, 25(1), 1984, 68-88.

0. Schwarzkopf, “Computing Convolutions on Mesh-Like Structures”, Depart-
ment of Computer Science, Utrecht University, 3508 TB Utrecht, The Nether-

lands, manuscript.

M. Sharir, “Efficient Algorithms for Planning Purely Translational Collision-
Free Motion in Two and Three Dimensions,” Proc. of the IEEE Int. Conf. on
Robotics and Automation, 1987, 1326-1331.

P. Swarztrauber, “Multiprocessor FFTs,” Parallel Computing, 5(1), 1987, 197
210.

Ch. Tong, P. Swarztrauber, “Ordered FFTs on a Massively Parallel Hypercube
Multiprocessor,” Parallel Computing, 1991, 50-59.

D. Zhu, J.C. Latombe, “New Heuristic Algorithms for Efficient Hierarchical
Path Planning,” IEEE Tr. on Robotics and Automation, 7(1), 1991, 9-20.

18

