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Geometry and the Discovery of New Ligands

Lydia E. Kavraki

Computer-aided drug design is a significant component

of the rational approach to pharmaceutical drug de-
sign. Chemists now consider the geometric and chemi-
cal characteristics of molecules early in the design pro-
cess in an effort to quickly identify ligands that have
good chances of becoming potent pharmaceutical drugs.
Computer assistance s not only helpful but also nec-
essary to narrow down the search for potential lig-
ands. Depending on the level of accuracy desired to
model drug action, detailed quantum mechanical meth-
ods or approrimate molecular mechanics methods are
used. Fven when simple approrimations are made, ef-
ficient approaches are needed to compute, among other
things, molecular surfaces and molecular volume, mod-
els of receptor active sites, reasonable dockings of lig-
ands inside protein cavities, and geometric invariants
among different ligands that exhibit similar activity.
This paper surveys several problems and approaches in
the area of computer-aided pharmaceutical drug design
and draws analogies with problems from robotics and
computational geometry.

1 Introduction

The design of pharmaceutical drugs is an extremely
complex and still not completely understood process
[2]. Computational chemists combine their knowledge
of molecular interactions and drug activity together
with visualization techniques, detailed energy calcula-
tions, geometric considerations, and data filtered out
of huge databases, in an effort to narrow down the
search for potent pharmaceutical drugs. Computer-
aided drug design is a significant component of rational
drug design [6], and is becoming more relevant as the

understanding of molecular activity improves and the
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Figure 1: The protease thermolysin with one of its known
inhibitors (1TMN)

amount of available experimental data that requires
processing increases.

A fundamental assumption for rational drug design
is that drug activity, or pharmacophoric activity, is ob-
tained through the molecular recognition and binding
of one molecule (the ligand) to the pocket of another,
usually larger, molecule (the receptor). In their active,
or binding, conformations, the molecules exhibit geo-
metric and chemical complementarity, both of which
are essential for successful drug activity [2, 49]. There
is no simple way to explain how drugs achieve their de-
sired effects. It is known, however, that several phar-
maceutical drugs are inhibitors, i.e. inhibit reactions
that would take place without their presence. For ex-
ample, if a cavity of a molecule provides a favorable en-
vironment for a reaction, a ligand that fills that cavity
in an energetically stable conformation can prevent this
reaction from happening. Figure 1 shows the protease
thermolysin and one of its inhibitors. Thermolysin is



the large molecule shown in the picture, while the in-
hibitor (1'TMN) is drawn in a darker color near the cen-
ter of that picture. The 3D structure of the complex
has been obtained by X-ray crystallography and can
be retrieved from the Brookhaven protein data bank.

The modeling of molecular structure is a complex
task. Quantum mechanics provide a detailed descrip-
tion of molecules in terms of atomic nuclei and electron
distribution among them. However, quantum mechan-
ical calculations cannot be used to treat large systems
because of high computational demands. The modeling
of the binding process is also a difficult task. The char-
acteristics of the receptor, the ligand, and the solvent
in which these are found have to be taken into account.
Although chemists strive to obtain models that are as
accurate as possible, several approximations have to
be made in practice. Molecules are thus visualized to
have surfaces and volume similar to our perception of
surfaces and volume of macroscopic objects, or are con-
sidered under ideal conditions (i.e. in vacuum). Tt is
clear that the more accurate the model used, the bet-
ter the chances chemists stand in predicting molecular
interactions. Nevertheless, there is a large number of
predictions made with approximate models which have
been confirmed with experimental observations [6, 34].
This has encouraged researchers to build tools that
use approximate models and investigate the extent to
which these tools can be useful. More accurate molec-
ular modeling, gained through better understanding of
drug activity or increased computational power, can
only improve the techniques developed with simpler
models.

Depending on whether the chemical and geometric
structure of the receptor is known or not, the problems
arising can be classified in two broad categories. If
the receptor is known, chemists are interested in find-
ing if a ligand can be placed inside the binding pocket
of the receptor in a conformation that results in low
energy for the complex. This problem 1is referred to
as the docking problem. It has several variations: an
accurate description of the binding may be desired,
or an approximate estimate of which ligands from a
huge database are likely to fit inside a receptor may be
sought. Very often the binding pocket is not known.
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In fact, the 3D structure of few large molecules (or
macromolecules) has been determined by X-ray crys-
tallography or NMR techniques. When the receptor is
not known, what is usually known is a number of lig-
ands that interact with that specific receptor. These
ligands have been discovered mainly by experiments.
Using the geometric structure and the chemical char-
acteristics of these molecules, chemists attempt to infer
information about the receptor. In particular, chemists
are interested in identifying the pharmacophore present
in these ligands. The pharmacophore is a set of features
at a specific 3D arrangement contained in all the active
conformations of the considered molecules. A prevail-
ing hypothesis is that the pharmacophore is the part of
the molecule that is responsible for any observed drug
activity, while the rest of the molecule is a scaffold for
the pharmacophore’s features. If the pharmacophore
is isolated, chemists can use it to design a more potent
pharmaceutical drug by examining the different activ-
ities, relative shapes, and chemical structures of the
initial molecules [27].

The techniques that have been used so far in
computer-aided drug design include geometric calcu-
lations (surface computation), numerical methods (en-
ergy minimization), randomized algorithms (conforma-
tional search), and a variety of other techniques like
genetic algorithms and simulated annealing (docking).
The machines used for these calculations range from
desktop workstations to supercomputers. It is only re-
cently that chemists have tools for complex geomet-
ric and energy calculations and the success of these
computer-aided methods is currently being evaluated

[2, 6].

This paper describes some of the computational
problems arising in rational drug design. It surveys
recent work on surface and volume calculations, confor-
mational search, docking, pharmacophore generation,
and database searching. The discussion reveals the
wealth and diversity of the problems that arise in the
domain of computer-aided pharmaceutical drug design.
Analogies with problems from robotics and computa-
tional geometry are also drawn.
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Figure 2: The hard-sphere model and stick diagram of

1TMN

2 Molecular Modeling

The hard-sphere model of I'TMN, the inhibitor of ther-
molysin of Figure 1, is drawn in Figure 2(a). This
model is an abstraction frequently used by chemists
to approximate the volume of a molecule. A sphere is
drawn around the center of every atom of the molecule.
The radius of each sphere reflects the space require-
ments of the corresponding atom and has been deter-
mined by a combination of experimental observations
and quantum mechanical calculations. A set of radii
that are commonly used are the van der Waals radu
[7]. If the van der Waals radii are used, the envelope
surface of the hard-sphere model is called the van der
Waals surface.

The stick diagram of a molecule (Figure 2(b)) draws
a line segment for each chemical bond. The angle be-
tween two consecutive bonds is called the bond angle
and the angle formed by the first and the third of three
consecutive bonds, when one looks along the axis of the
second bond, is called the dihedral or torsional angle.

A priori, all bond lengths, bond angles, and torsional
angles are degrees of freedom (DOF) of the molecule.
Because of their chemical characteristics certain bonds
cannot rotate about themselves and, as a result, all
the torsions in which they participate as middle bonds
are fixed. Bond lengths and bond angles tend not to
exhibit large variations in their values. It is fairly com-
mon to consider bond lengths and bond angles con-

stant in calculations [28; 34]. Torsional angles, how-
ever, vary significantly and this affects the 3D shape
of the molecule. When bond lengths and bond angles
are considered fixed and only torsions vary, a molecular
chain with n torsions can be viewed as an articulated
mechanism with n revolute joints.

Standard geometries are commonly used to construct
reasonable models of molecules. For example, there ex-
ist tables that show “preferred values” for bond lengths
and these depend on the kind of atoms participating
in these bonds [7].

calculated for bond angles and torsional angles, and

Preferred values have also been

again depend on the types of atoms linked by the
corresponding bonds. The exact values used are ob-
tained from statistical analysis of structural data in X-
ray databases, like the Brookhaven or the Cambridge
databases. Although it 1s true that there is variability
in the geometric data in these depositories, the infor-
mation gathered provides a reasonable approximation
of reality [7, 34].

As far as calculations of energy are concerned, empir-
ical force fields are used in practice instead of more de-
tailed methods like quantum mechanics. A typical em-
pirical force field includes terms for bond-stretch, bond-
angle and torsional-angle deformations, and terms for
van der Waals and Coulomb potentials [52]. Fre-
quently, terms that model solvation effects are also in-
cluded. Interaction of the molecule with the solvent in
which it 1s dissolved is very important but also difficult
to model accurately [7, 34]. An example of how the
energy of conformation ¢ can be calculated with em-
pirical force fields when the molecule is considered in
vacuum is given below:
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In the above K, K,, and K, are force constants, ¢

is the dielectric constant, and n is a periodicity con-



stant. R, #, and ¢ are the measured values of the bond
lengths, bond angles, and torsional angles in confor-
mation ¢, while Rg, g, and v are equilibrium (or pre-
ferred) values for these bond lengths, bond angles, and
torsional angles. 7;; measures the distance of atom
centers in c. The parameters oy, ¢;;, and ¢; are the
Lennard-Jones radii, well depth, and partial charge for
each atom in the system. All parameters and constants
above are derived by a combination of quantum me-
chanics, vibrational methods, and experimental data.
Once the values of bond lengths, bond angles and tor-
sional angles of a conformation are known, obtaining
the energy of a molecule with an empirical force field is
a straightforward task. Minimization of this energy is
not easy however, since force fields are non-linear func-
tions and may contain a large number of local minima.

Calculations of energy are very important in the
molecular world. In nature, molecules are usually
found in low-energy conformations. Protein-ligand
complexes are stable when the binding energy of the
system 1s low. It should be emphasized that the ex-
act calculation of molecular and binding energies is by
no means a simple task [52], and that empirical force
fields offer only an approximation. Nevertheless, as
noted above, there are several cases where reasoning
with these approximations has produced meaningful

results [5, 7, 34].

Before describing specific problems let us also de-
fine the concept of molecular features. Chemists group
atoms according to their chemical characteristics and
use a label to refer to these groups. Given a molecule
there are rules that identify the hydrophilic and hy-
drophobic parts of that molecule, the hydrogen-bond
donors and acceptors, the charged centers, etc. These
features are used, for example, to define pharma-
cophores, or to specify database queries that will re-
trieve ligands with certain characteristics. The accu-
rate definition of features is a difficult task for the
chemist, but is out of the scope of this paper [17, 32].

3 Molecular Surfaces & Volume

Computing surfaces and volume of molecules analogous
to our perception of macroscopic surfaces and volume
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Figure 3: (a) van der Waals, (b) molecular, and (c) sol-

vent accessible surface

has attracted considerable attention [58]. This infor-
mation is useful in calculations for molecular recogni-
tion and docking [12], or computations of the energy
of a molecule in solution [24]. Surface computation
i1s also useful in pharmacophore identification, since
atoms that are buried or little exposed are not likely

to participate in a pharmacophore.

3.1 Types of Surfaces

Surfaces that are of interest to chemists include the van
der Waals surface (defined in Section 2), the molecu-
lar surface and the solvent accessible surface [48, 66].
Figure 3 illustrates these different surfaces.

The molecular and the solvent accessible surfaces
are defined with the help of a solvent atom which is
a sphere of radius r. In particular, the molecular sur-
face is defined by the front of the solvent sphere when
this is rolling around the van der Waals surface. The
solvent accessible surface is defined by the center of the
solvent when this is rolling around the van der Waals
surface of the molecule. In other words, the solvent ac-
cessible surface i1s the boundary of the free placements
of the center of the sphere of the solvent, when this is
moving among the atom spheres of the molecule. Tt
can thus be computed, using configuration space tech-
niques from robotics, as the union of the Minkowski
sums of each molecular atom sphere and the sphere of
the solvent [36].
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3.2 Methods

Approximation and analytical methods have been used
for the computation of surfaces of molecules. A sur-
vey of early techniques is given in [58]. Two widely
used methods are Richards’ method [65], which ap-
proximates the volume of a molecule by polyhedra,
and Connolly’s approach [11], which analytically com-
putes molecular surface patches. More recently, meth-
ods from computational geometry are being employed
to efficiently compute surfaces and volume without the
limitations of previous approaches [19, 36, 50, 70].

Halperin and Overmars [36] observed that the com-
plexity of the arrangement defined by n atomic spheres
of a molecule is ©(n), as opposed to O(n?) for a general
arrangement of spheres in space. The complexity of an
arrangement is defined as the overall number of cells in
that arrangement. In the same paper it is shown that
the arrangement of atomic spheres can be decomposed
into an arrangement of simple cells whose total com-
plexity is O(n). As a result, it is possible to construct
a hashing data structure that uses O(n) space and can
answer intersection queries for spheres of comparable
radii to the atomic spheres in constant time. Compu-
tation of surfaces and volume follows nicely from this
data structure. In particular, the van der Waals surface
of a molecule can be constructed in O(nlogn) time.
Similar results can be obtained for the solvent accessi-
ble and the molecular surface.

Edelsbrunner uses alpha shape theory to accurately
compute the surface and volume of molecules [18]. The
alpha shape is the space occupied by the simplices of an
alpha complex. These simplices are constructed in such
a way that they are always a subset of the simplices
defined by the weighted Delaunay triangulation of the
molecule. In the above model, a 1s a parameter that
regulates the radius d = v/w?+ a of atomic spheres,
where w denotes the van der Waals sphere of an atom.
If o is increased from its least possible value (a nega-
tive value) to zero, the shape of a molecule grows from
a set of points to its van der Waals shape. Appropri-
ate simplices are maintained as a changes, and when
a = 0 the set of constructed simplices, the alpha com-
plex, contains important information about atom inter-

sections and the topology of the molecule. The alpha
complex can be computed in O(nlogn) time and then
it 1s possible to quickly identify the atoms on the sur-
face of the molecule, and compute the van der Waals,
molecular, and solvent accessible surfaces. The volume
of the alpha complex can be combined with the vol-
ume of the surface atoms to compute the volume of
the molecule. Furthermore, the topological structure
of the apha complex permits the identification of voids
and canyons in the molecule [19, 20, 50]. Alpha shapes
have also been used by Varshney el al [70] for molecular
modeling. This work has produced a parallelizable al-
gorithm that scales linearly with the number of atoms
in a molecule for computing molecular surfaces.

3.3 Dynamic Maintenance

Although algorithms that compute molecular surfaces
have been widely investigated, little has been done for
their dynamic maintenance. For calculation of bind-
ing energies, to give an example, it is interesting to
know how the surface that one particular atom con-
tributes to the outer van der Waals surface changes, as
the shape of the molecule changes. Work on dynamic
data structures is useful in this respect [35].

4 Conformational Search

Conformational search is a fundamental problem in
molecular biology. Perhaps the most well-known con-
formational search problem is the protein folding prob-
lem. It is believed that proteins have “unique” 3D
shapes which correspond to global minima of their to-
tal energy and which are specified only by the chemical
composition of the molecules. Finding these conforma-
tions 1s by no means an easy task and involves several

hundreds of DOF [16].

For small ligands, finding the conformation with the
minimum energy is of little interest. What is interest-
ing is to find a set of conformations whose energy is
below a threshold and which are geometrically distinct
[46]. Such conformations are used in docking [59] and
pharmacophore identification [55]. Low-energy confor-
mations of a molecule that also respect certain “dis-



tance constraints” (i.e. have certain features at specific
positions in 3D space) are also of interest to computa-
tional chemists. Tools that can produce such confor-
mations have applications in database screening [56].

Several approximations are made during conforma-
tional search depending on the level of detail required.
For example, it is usual to consider bond lengths and
bond angles almost fixed, choose torsional angle values
from predefined distributions, and simplify the energy
model considered [28, 34]. Frequently the molecule is
assumed to be in vacuum. An external potential can
be considered with most conformational search meth-
ods but may result in longer computation times. De-
pending on whether distance constraints are imposed
when conformational search is performed, we distin-
guish conformational methods into unconstrained and
constrained techniques.

4.1 Unconstralned Search

A wide variety of methods for searching conformational
space have been described in recent years (for a survey
see [46]). Systematic search methods sample each tor-
sional DOF of the ligand at regularly spaced intervals
and were among the first to be developed and used [51].
The discretization of the torsional values is typically as
coarse as 30° or 60° [46]. Even with such a resolution
the number of conformations that are generated with
systematic search can be very large. Typically the en-
ergy of all generated conformations is minimized which
is an expensive operation. Several heuristics have been
used to quickly prune down conformations that are
close to previously generated conformations [68] in an
effort to enhance the diversity of the sample.

A variety of randomized methods are also under
investigation: conformations are obtained by apply-
ing random increments to the torsional DOF of the
molecule starting from a user-specified initial confor-
mation [26], or from a previously found low-energy con-
formation [9]. Recent articles, which attempt to com-
pare different methods, emphasize the superior quality
of the results obtained with stochastic methods [26].

Randomized techniques have been proven useful for
high-dimensional search problems [38] and this direc-
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Figure 4: Two clusters of 1 TMN

tion deserves to be further explored in the context of
conformational search. A random sampling method for
exploring the conformation space of small molecules
has been recently developed in [22]. This method bor-
rows 1deas from randomized techniques for planning
in high-dimensional configuration spaces [38]. The ap-
proach is divided into three steps: generation of ran-
dom conformations, minimization of these conforma-
tions, and grouping or clustering of the minimized con-
formations. Initially, a large number of conformations,
frequently tens of thousands, are generated at random
over the conformational space of the molecule. The
generation of these conformations is done by selecting
each torsional DOF of the molecule uniformly from its
allowed range. The selection can also be done accord-
ing to a distribution that reflects preferred values for
each torsional DOF, if such information is available.
The resulting structure is stored only if it avoids inter-
sections of the spheres of non-bonded atoms. Subse-
quently an efficient minimizer is used to obtain a con-
formation at a low energy minimum. At this step only
conformations below a user-defined energy threshold
are retained. Experimental observations have shown
that the number of these conformations can be very
large. Since only conformations that are geometrically
distinct are interesting, it is necessary to partition the
low-energy conformations into clusters of similar con-
formations. Figure 4 shows two of the clusters obtained
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with the randomized approach of [22] for ITMN. At the
end of the clustering step, a representative per cluster
can be retained.

Conformational search raises a number of interesting
issues. Many open questions remain on what are good
minimization techniques for the energy models that are
available for small molecules, what are reasonable sim-
ilarity measures for conformations, and how partition-
ing can be done efficiently. Improvements in each of
these domains can affect the performance of conforma-
tional search software and the quality of solutions ob-
tained for the problems where these conformations are
actually used (i.e. docking and pharmacophore identi-
fication).

4.2 Constrained Search

Most of the techniques described in the previous section
will produce poor results when distance constraints are
imposed in the structure of the molecule. Distance
constraints arise frequently in practice. For example,
chemists may be interested in conformations that keep
two atoms of the molecule at specific positions in space
because these two atoms belong to a pharmacophore.
Ring structures impose distance constraints by their
own nature: maintaining ring closure when a torsional
angle in the ring changes, requires the atom at the
beginning and the atom at the end of the chain to be
at a bond’s length distance from each other.

The constrained conformational search problem has
a direct analog in robotics, namely the problem of in-
verse kinematics. If the bond lengths and bond angles
in a single molecular chain are considered fixed, then
the chain can be viewed as a serial manipulator with
revolute joints (these joints correspond to the torsional

DOF of the chain).

Manocha et al [54] exploit the work done in robotics
for computing inverse kinematics of manipulators to
find valid conformations for small molecular chains. In
particular, the case of a serial manipulator with 6 rev-
olute DOF has been extensively studied (6 is the min-
imum number of DOF for a robot to be able to span a
full-rank subset of SE(3) [13]). Symbolic manipulation

of the equations of Raghavan and Roth [63] transforms
the inverse kinematics problem into one of computing
the eigenvalues and eigenvectors of a matrix, which in
turn can be done efficiently [53]. In a similar way, the
inverse kinematics of a serial molecular chain with 6
torsional DOF can be computed by finding the eigen-
values and eigenvectors of appropriately defined ma-
trices. For chains with n > 6 torsions, 6 torsions are
considered free while the rest n — 6 are assigned dis-
crete values and this procedure is repeated for different
values of the n — 6 “fixed” torsions. The techniques in
[54] are very efficient when computing conformations
that maintain ring closure and for local deformations
of small protein chains. It is worth mentioning that
algebraic equations in 6 unknowns were also derived
in [28] for finding the permissible conformations of a
single-loop molecule when only 6 torsional angles are
considered free, and solutions in limited cases were ob-
tained.

Other kinds of methods, like distance geometry [14],
are also being tested for constrained conformational
search problems. Distance geometry exploits the fact
that lower and upper values on interatomic distances
can be derived from the restriction that atoms belong
to a 3D chemical structure. These distances are used to
refine 3D models of molecules by a variety of constraint
propagation and “bounds smoothing” techniques. Dis-
tance geometry can also deal with large scale con-
strained conformational search problems like the ones
arising from NMR data [14]. NMR produces distances
between atoms of a macromolecule and chemists seek to
reconstruct the 3D conformation of the molecule that
produced these distances. The drawback of distance
geometry methods is that they may fail to converge to
a solution and can be relatively slow in practice [54].

Note finally that constrained optimization tech-
niques, which minimize the energy of a conformation
while observing distance constraints, can be used to
obtain more stable conformations starting with confor-
mations produced by algebraic or distance geometry
techniques. The speed of constrained conformational
procedures is crucial if these procedures are used to
screen large databases [46].



5 Receptor is Known: Docking

Surface calculations and results of conformational
search are used when trying to find a “reasonable”
docked position of a ligand inside a known receptor.
Information about the geometry of the receptor is ob-
tained by X-ray crystallography or NMR techniques.
For docking, it is generally assumed that the receptor
molecule is rigid [47]. This approximation is justified
by experimental data i.e. crystals of the molecule with
and without the ligand, but exceptions have also been
noted [60]. For the ligand however, it is essential to
address its flexibility.

A central question for the docking problem is how to
represent the geometry of the cavity, and how to com-
pare it to the geometry of the ligand. The computation
of the binding energy of the complex i1s a very impor-
tant issue to be addressed in docking, but his problem
is out of the scope of the present paper.

5.1 Rigid Ligand

If the ligand is considered rigid, it is possible to system-
atically search its six-dimensional configuration space
for possible placements inside the binding pocket, but
such a process can be time consuming. Several recent
methods adopt a different approach: they try to match
points (features) of the binding pocket to points (fea-
tures) of the ligand. The points inside the pocket are
referred to as “hot spots” [30], “essential points” [59],
or “matchprobes” [71].

The definition of matching points in the receptor
and the ligand varies widely with the method used.
Some approaches use energy calculations to define
these points. They describe, for example, the chem-
ical environment of the pocket using a 3D grid, and
define matching points as energetically favorable sites
for certain functional groups [30, 59]. When the ligand
molecule 1s placed in the grid region, the interaction
energy can be efficiently calculated using precomputed
data. Other docking approaches use only the geome-
try of the receptor and the ligand to define matching
points. DOCK [43, 67], one of the earliest methods for
docking, generates spheres inside the binding site in a
way that they touch the surface of the pocket in two

L. Kavraki

points and have their centers along the surface normal
at one of these points. The centers of these typically
overlapping spheres are the receptor’s matching points.
Spheres are created in a similar way inside the ligand
and their centers are the matching points of the ligand.
The description of the binding pocket by the spheres
described above is not unique and may seem arbitrary,
but several successful predictions have been reported

[67].

After essential points have been identified in the
pocket and the ligand, the docking problem reduces
to a matching problem. All possible combinations of
ligand-receptor points can be tried if their number is
small [45]. Simple heuristics can be used to narrow the
search. DOCK, for example, selects a pair of recep-
tor points and measures their distance. Then a pair
of ligand points that are at approximately the same
distance with the receptor points is found. A third
receptor point is chosen its distances with the previ-
ously selected receptor points are used to identify a
third point of the ligand. This process continues until
a specified number of pairs is found or until no possible
matches can be found. In that case the algorithm back-
tracks. At least four points are necessary to define an
unambiguous orientation of a ligand inside a receptor.
Other approaches [42] build a “docking graph” using
the receptor and ligand matching points. The graph
has a node for all pairs of receptor-ligand points, and
an edge between two nodes, if the pairs correspond-
ing to the nodes can be matched at the same time. A
maximal clique in this graph will produce a maximal
matching between the receptor and the ligand. Tt is
well known that this problem is NP-hard [25] but the
method is reported to work well in practice [42].

The matching problem that arises in docking, has
analogies with the geometric matching performed for
model-based shape recognition [21]. These analogies
are extensively discussed in [62]. Tn geometric match-
ing, a 3D model of an object is known. Given a set of
3D points which may lie on the surface of that object,
a rigid transformation is sought to align these points
to the model. In the context of molecular docking the
ligand provides the model, and the receptor provides
the set of 3D points that are checked against the model.
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Techniques developed for model-based recognition, like
interpretation trees [33] or geometric hashing [44], are
thus applicable to the docking problem. In fact, ge-
ometric hashing has already been used for molecular
docking in protein-ligand and protein-protein studies
[1, 61]. In geometric hashing, a hash table for the lig-
and is computed and this is a transformation invariant
representation of the molecule. Given a set of points in
the receptor, matches can be detected through a vot-
ing scheme. An advantage of this approach is that the
hash table for the ligand can be computed off-line, and
after that 1t 1s possible to dock the ligand to multiple
receptors.

5.2 Flexible Ligand

To address conformational flexibility, a widely used ap-
proach has been to consider different low-energy con-
formations of the ligand. These conformations, which
are frequently obtained by a conformational search pro-
cedure, are tried against the receptor cavity using a
technique developed for docking a rigid ligand to a rigid
receptor [59]. To facilitate such docking approaches,
several molecular databases now store a set of geomet-
rically distinct conformations per ligand [39]. Tt is clear
that if the active conformation is not one of the confor-
mations considered, these methods will fail to produce
the optimal docking.

Conformational flexibility has also been addressed
In that
case, the torsional DOF of the molecule are changed in-

directly by simulated annealing techniques.

side the receptor’s cavity [31]. One could also imagine
using randomized sampling techniques instead of simu-
lated annealing to find low-energy conformations of the
ligand inside the binding pocket. Matching points de-
fined inside the binding pocket are again useful when
flexible ligands are considered. In this case however,
fragments of the ligand are docked independently and
the fragments are later joined into conformations which
are in turn refined and ranked with appropriate scoring
functions [15, 64, 71]. The idea of “building” a ligand
inside a binding pocket is also popular with methods
that suggest unsynthesized compounds or add func-
tionality to a known inhibitor [40].

Figure 5: The features of the pharmacophore interact with

features of the receptor cavity

Allowing for ligand flexibility is a challenging and
still unsolved problem in protein-ligand docking. Ef-
ficient geometric techniques that can exclude place-
ments of fragments that are in collision with the rest of
pocket, or can suggest reasonable placements for these
fragments may help prune the number of placements
that are subjected to rigorous energy calculations. Re-
searchers have also stressed the need for more accurate
scoring functions for characterizing the energy of the
binding. The development of such functions remains a
difficult and poorly understood problem [5].
Pharma-

6 Receptor is Unknown:

cophores

When the 3D structure of the target macromolecule
is not known, the identification of a pharmacophore is
key to the development of new pharmaceutical drugs
[55]. A prevailing assumption in rational drug design is
that if different ligands exhibit similar activity with a
receptor, this activity is due largely to the interaction
of the features of the pharmacophore to “complemen-
tary” features of the receptor (see Figure 5). Thus, if a
pharmacophore has been isolated, chemists can use it
as a template to build more potent drugs [27]. Given
5-10 ligands that are very flexible, finding a set of fea-
tures that is present in the same 3D arrangement in the
active conformation of these ligands is by no means a
simple task. Figure 6 shows 4 different inhibitors of
the protease thermolysin which was drawn in Figure
1. These ligands have 5 to 11 torsional DOF and each
of these molecules can assume a large number of dis-
tinct low-energy conformations when these torsions are
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Figure 6: Four different inhibitors of thermolysin

varied [22, 46].

Initial approaches to pharmacophore identification
searched simultaneously, in a systematic way, the con-
formational space of all molecules [57]. These ap-
proaches are now abandoned due to their prohibitive
computational cost. The most popular recent algo-
rithms start with a collection of distinct low-energy
conformations per molecule, obtained by a conforma-
tional search procedure. They search for an invari-
ant present in at least one conformation of most of
the given molecules. Requiring that the invariant be
present in all molecules may unnecessarily exclude so-
lutions, since conformational search methods do not
guarantee that all distinct low-energy conformations

have been produced.

DISCO [55], one of the most popular algorithms for
pharmacophore identification, uses clique detection to
identify invariants. Initially the program considers a
pair of conformations ¢; and ¢z belonging to different
molecules. A “correspondence graph” (G is constructed
and this graph is similar to the “docking graph” de-
scribed in Section 5.1. The nodes of G are again all
node pairs of ¢; and ¢z. An edge in G is created if the
pairs in each of the connected nodes can be matched si-
multaneously. The Bron-Kerbosch clique detection al-
gorithm [8] is then used to find cliques in G. These cor-
respond to invariants in ¢; and ¢y and thus to candidate
pharmacophores. The algorithm seems to work well in
practice [55, 72]. Generalization of the above approach
to n conformations is straightforward by considering

L. Kavraki

one of the conformations as a reference and comparing
it with all other n — 1 conformations. Common parts
of all pairwise invariants need to be computed in the
end.

If a large number of conformations per molecule are
considered, there can be a combinatorial explosion in
the number of basic operations performed by algo-
rithms like DISCO [3]. This is the main reason why
different approaches are under development. One idea
is to start with small invariants (2-3 features) and grad-
ually expand them [3]. Another idea is to use random-
ized techniques when searching for invariants. When
conformations ¢; and ¢y are compared in [22], a ran-
domized sampling scheme is used to select atoms (fea-
tures) in conformation ¢;, and a hashing structure is
built to find possible matchings of these atoms (fea-
tures) in cg. This process is repeated for all pairs of
conformations of two molecules and produces several
invariants. It is then checked if these invariants are
present in the rest of the considered molecules with an
elaborate hashing scheme.

7 Database Searching

Searching databases of 3D chemical structures for lig-
ands with specific characteristics is becoming a basic
Although, it is

fairly simple to do an initial screening of a database

tool in rational drug design [56, 72].

with one million compounds, it is difficult to narrow
down the results at later stages [72]. Ligand flexibil-
ity can increase dramatically the number of cases that
need to be examined before it is decided that a molecule
does not match a query.

Queries in current database systems are usually spec-
ified by a 3D graph whose nodes correspond to specific
features and whose edges correspond to diatomic dis-
tances. Formulating a query in this way is consistent
with the definition of a pharmacophore. To find ligands
with a specific pharmacophoric pattern in a database,
a combination of the techniques described in this pa-
per can be used. The efficiency requirements for these
techniques are however increased considerably. For ex-
ample, algorithms developed for surface computation
or conformational search may need to be reevaluated
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in the context of database queries: it may be possible
to find if a feature is on the surface of a conformation
without computing the whole surface, or to produce a
conformation which is very different from a given one
without performing a large scale conformational search.

Many database queries result in a constrained
conformational search problem which is currently
poorly addressed [72].
atic/randomized search, and genetic algorithms have

Distance geometry, system-

been tried but have produced slow algorithms [4, 9,
10, 23]. One of the most efficient existing techniques
for flexible searching is the “Directed Tweak Method”
[37, 69]. The method minimizes a pseudoenergy func-
tion which combines the energy of the molecule and
the sum of the squares of the deviations of the dis-
tances found in the molecular structure to the distances
expressed in the database query. Unfortunately the
pseudoenergy function contains a large number of lo-
cal minima and conformations having high energy are
frequently returned [10]. Techniques that can produce
low-energy geometries that avoid these local minima
are clearly needed [72].

8 Discussion

Computed-assisted methods for rational drug design
are likely to combine a number of different tech-
niques like randomized search methods, efficient in-
dexing schemes, algebraic techniques, constrained op-
timization, etc. Undoubtedly, the geometry of the lig-
ands is only one part of the picture of rational drug
design, the other being the energy and chemical prop-
erties of the molecules involved. Software tools that
consider molecular geometries and perform simple en-
ergy calculations can help in the early stages of drug
development [2, 5, 6, 72]. The increased use of such
tools may also contribute to an improved understand-
ing of drug action and to the development of models
that can better explain drug activity [29, 41]. Last
but not least, the amount of data that 1s now available
in molecular databases makes such tools indispensable
to medicinal chemists. From a computational point of
view, the geometric problems that arise in drug design,

even when simple energy models are assumed, are truly
challenging.
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