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Abstract

IEEFE 802.11b wireless Ethernet is becoming the standard
for indoor wireless communication. This paper proposes
the use of measured signal strength of Ethernet packets as
a sensor for a localization system. We demonstrate that
off-the-shelf hardware can accurately be used for location
sensing and real-time tracking by applying a Bayesian lo-
calization framework.

I. INTRODUCTION

The IEEE 802.11b wireless Ethernet standard is becom-
ing increasingly popular and has been already deployed in
many indoor environments [19]. Many mobile robots al-
ready make use of wireless networking for communication.
Wireless Ethernet devices measure signal strength as part
of their normal operation. We propose the utilization of
off-the-shelf wireless Ethernet adapters on a mobile robot
as a tool for global pose estimation. This paper is a feasi-
bility study on the advantages and the difficulties of using
this sensor for robot localization. We believe that there
is a great potential for Wireless Ethernet to be applied as
an additional input to a sensor fusion technique for robot
localization.

Determining the pose of the robot from physical sensors
is a key problem in robotics, since it plays a pivotal role
in various successful mobile robot systems [4]. Outdoor
localization can be achieved using GPS [18]. Using GPS
for indoor localization, however, presents some significant
challenges [20]. For the problem of indoor localization, a
variety of other sensors have been used, such as vision,
IR and laser range-finders. Mobile robots already employ-
ing wireless Ethernet for communication purposes could be
retrofitted in software to make use of their adapter as a lo-
cation sensor. Such a sensor might be very useful for a low-
cost robot or team of robots wishing to execute global lo-
calization, navigation and exploration tasks. This is of par-
ticular interest for some multi-robot configurations; while
communicating, the robots could measure signal strengths
to each other and engage in collaborative localization.

The chief difficulty in localization with wireless Ethernet
is predicting signal strength. RF signal strength measured
indoors is non-linear with distance. In addition it has non-
Gaussian noise resulting in multi-path effects and environ-

mental effects such as building geometry, network traffic,
presence of people and atmospheric conditions.

This paper describes a set of experiments with a lap-

top carried by a human operator whereby localization with
IEEE 802.11b wireless Ethernet is shown to be feasible.
The focus of this work was to determine the usability of
wireless Ethernet as a sensor. This was motivated by an ap-
plication in wireless computing, that of locating an intruder
using a laptop [16], [15]. However, it is also a minimalist
approach which isolates the sensor we are testing and gen-
erates results applicable to mobile robotics. To compute
position, we apply a scheme in the spirit of other Bayesian
techniques that have been successfully employed in the con-
text of robotics [23]. We show experiments demonstrating
that off-the-shelf wireless hardware can accurately be used
for location sensing and tracking with about one meter pre-
cision in a wireless-enabled office building.
Related Work. The simplest technique used for mobile
robot localization has been dead reckoning. With dead
reckoning errors are added to the absolute pose estimate
and accumulated. Triangulation techniques were also used,
in this case landmarks are extracted from the sensor input
and then they are used to triangulate the robot’s position.
This works when the sensors are reliable but leaves several
problems unaddressed [6]. Kalman filters were also applied
for localization [22], [17], where various sensor data are
fused to obtain a new position estimate. This method is
provably optimal when noise distributions are gaussian but
typically fails when these assumptions break down. The
most powerful algorithms to date are based on Bayesian
inference, in particular Markov models [13], [8] and Monte
Carlo localization [7], [24]. Most often the workspace is
represented by an occupancy grid.

Alternately, the environment can be modeled with a
topological map, e.g., as a generalized Voronoi graph [2];
localization in this paradigm is based on identifying nodes
in the graph from geometric environmental information [3],
[14]. Our research uses the Bayesian approach. We sam-
ple the space, we measure the signal strength at regularly
spaced locations and calculate the probability distribution.

Localization is a problem that has been also explored
in the wireless community for a wireless device like a lap-
top computer, usually carried by a human operator. Many
systems have been implemented that use specialized hard-
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Fig. 1. Two examples of signal strength distributions, measured over time at a constant location.

ware [25], [21]. The RADAR system [1], however, uses
only the 802.11b wireless networking for localization and
applies nearest neighbor heuristics and triangulation tech-
niques. The authors report accuracy of 3 meters with about
fifty percent probability. While our work has similar design
goals to RADAR, we have taken a very different approach.

RF Signal Propagation in Wireless Ethernet. The
IEEE 802.11b standard uses radio frequencies in the
2.4GHz band, which is license-free around the world. Ac-
curate prediction of signal strength from location is a com-
plex and difficult task since the signal propagates by unpre-
dictable means [5], [19]. In the 2.4GHz frequency band, mi-
crowave ovens, Bluetooth devices, 2.4 GHz cordless phones
and welding equipment can be sources of interference. Sig-
nals of this frequency are absorbed by water and conse-
quently people will also absorb signal since human bod-
ies are almost 70% water. Due to reflection, refraction,
scattering, dependence on atmospheric parameters and ab-
sorption of radio waves by structures inside a building, the
transmitted signal most often reaches the receiver by more
than one path, resulting in a phenomenon known as multi-
path fading [11]. Signal multi-path effects cause the ob-
served signal strength to vary in unpredictable ways as the
receiver position varies, but signal profiles tend to remain
approximately the same over short distances [11].

Many efforts have been made to model radio signal distri-
bution in an indoor environment [9], [19]. Although it has
been suggested that the signal propagates according to a
log-normal function [10], [9], different experiments have ar-
rived at different distributions and a general model remains
unavailable. Our experiments verified this; we concluded
that log-normal fits were only feasible when line-of-sight
between transmitter and receiver existed. In our experi-
ments, the noise distributions of signal strength measured
at a fixed location varied greatly. In Figure 1, we show two
typical examples of the signal. The two distributions cor-
respond to measurements taken over time from the same
position. Although there is a dominant mode in both of
them, we observe that the distributions are asymmetric
and multi-modal, (i.e., non-Gaussian).

II. METHODOLOGY

Hardware. Our experiments were conducted by a human
operator carrying a HP OmniBook 6000 laptop with a

PCMCIA LinkSys wireless Ethernet card. This particu-
lar card uses the Intersil Prism2 chip set. We modified the
standard Linux kernel driver to use the base station probe
facility of 802.11b [12] to request packets from the base sta-
tion to obtain the necessary signal strength measurements.
The normal usage of this facility is for determining which
base station has the strongest signal and should be cho-
sen as the home station for the card. The card firmware
logs and reports 8-bit signal strengths and hardware ad-
dresses (MAC addresses) for each response packet received.
Each probe returns between 0 and 4 responses from each
base station within range of the card. Probes can be made
safely at frame rate of between 3 and 6 times per second
which will vary with network traffic and location. We re-
mark that this signal is quite thin when compared to other
sensors such as sonar or a laser range finder. We estimate
that in our setup, there are roughly 5 meaningful bits of
information from each packet and these bits are noisy.

Our Model. The localizer that we implemented operates
in the general framework of Bayesian inference localiza-
tion [23], [8], [13]. We chose a state space and observation
space. Position is represented as a probability distribu-
tion over the states. The inference calculation consists of
conditioning on the observations and then selecting a rep-
resentative point from the resulting distribution.

We chose points in four hallways of the building our ex-
periments took place in, spaced roughly 1.5 meters apart
from each other, at two orientations. A point for our ex-
periments was represented as a tuple (z,y,0). To sum-
marize, our state space consisted of a set of n points
S = {51 = ($17y1701)7 - Sn = ($n7yn70n)}

Our observation space consisted of the observations that
occurred in a single measurement from our base station
scanner. A packet consists of k pairs of base station MAC
address and signal strength. The number of replies k is
different from the number of base station, which in our
experiments is 14. This is due to the fact that some base
stations may not reply at all or some of them may reply
up to four times. We are assuming that the number of
times a base station is replying to a probe is independent
from the signal strength of the reply. As a result, a single
measurement consists of a count £ of the number of base
station replies, a summary of the frequency counts (the
number of times each of the N base stations was seen in
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Fig. 2. Map of Duncan Hall. There are 5 base stations marked on this map as enumerated small circles (larger circles in the picture are the
pillars). Two of them are located at Hallway 1 and Hallway 2. Overall 14 different base stations were used, they were located in two different

floors.

this measurement) and then the k pairs. We denote this as
a vector o =< k, f1,.--, fn, (b1, A1), -- -, (b, Ax) >, where
k is the count, N is total number of base stations, f; is
the frequency count for the ith base station, b; is the base
station index of the jth measurement and ); is the signal
strength at that point.

At each point s;, we take a sample of the observable. For
each base station we build two histograms at that point.
The first is a distribution of the frequency counts over the
sampled observations. The second is a distribution of signal
strengths. Based on this sample, we can calculate two kinds
of conditional probability: Pr(f; = als;), the probability
that the frequency counts for the jth base station is a when
we are at state s; and Pr(\;|b;,s;), the probability that
the base station b; has signal strength \; at state s;. For
o =<k, fi, .-, fn, (b1, A1),-.., (b, A\x) >, for each 1 <
1 < n and under the assumption that the signal strength is
independent from the number of replies, we compute:

k
H P'I‘()\j|b]', Si)

Jj=1

Pr(ols;) = HPr filsi)

By explicitly integrating a probability distribution of po-
sitions based on a received measurement and selecting a
representative point we obtain a position estimate. Af-
ter trying several possible schemes, we decided to solve a
global localization problem for each measurement rather
than keep a running estimate because each measurement
usually contains enough information to get a good guess
of our position. Initially, we assign equal probability to all
possible states in the building of being the actual position.
Tterating over all states, we compute which position is most
likely to have resulted in the measured signal by select-
ing the point of maximum probability assuming that the

point exceeds a certain threshold probability. The result-
ing stream can be further processed to improve precision
(see “Sensor fusion”, below).

Training Process. Our system was trained by taking
samples every 1.5m in the world by three different oper-
ators. Each operator, had to hold a laptop, to stand still
for several seconds at each sample point to collect data.
We assume that sampled data was operator independent,
that is to say that we believed that measured distributions
would be relatively unaffected by who took the data. The
amount of data taken at each point is varied adaptively
according to a simple heuristic which measures the rate
of convergence to a stable distribution. Once the sampled
distribution at each visible base station had converged be-
yond a threshold, we halt the process. This allowed us
to train the system faster, spending more effort only in
positions where it’s necessary to achieve an accurate mea-
surement of the signal strength distribution. In our case,
usual sampling times ranged from ten seconds to a minute,
per position.

Sensor Fusion with a Hidden Markov Model. We
implemented a filter that works on top of the Bayesian
inference procedure. It takes the output of the inference
engine as a stream of timed observations and tries to sta-
bilize the distribution by noting that a person carrying a
laptop typically does not move very quickly. This sort of
calculation could be achieved with a much higher degree of
precision using odometry from a mobile robot.

We model a moving operator trying to track her position
as a hidden Markov model (HMM). We use a more finely
discretized state space than the Bayesian inference engine
and try to interpolate our position out of the stream of
measurements coming from this filter. We observed that,
by averaging our training measurements, taken at a 1.5



meter spacing, and using the average measurement for the
points in between, we were able to localize the computer
for points we had not taken any training samples at.

For our purposes, an HMM is a set of states S =
{s1,-..,8n}, aset of observations O = {o1,...,0n}, a con-
ditional probability A : S x O — [0,1], and a transition
probability matrix A. As in the Bayesian inference engine,
each state is a point (z,y,6).

The transition probability matrix semantics describe
how the system being modeled evolves with time. In
this case, it describes how a person travels through the
state space. If 7 is a probability distribution over S, then
w' = Am is the probability distribution after some discrete
time step. The idea is that the random state change occurs
“hidden” from the observer.

The observation function A has semantics identical to
observation in the Bayesian inference of position. A(s,0) =
Pr(o|s), the probability of observing o while at s. As each
observation arrives, A is used to update the probability of
being in a given state in S, and then A is used to transi-
tion states. A is chosen to be a model of the behavior of
the inference engine and A is chosen to heuristically model
human motion.

III. RESULTS

In our experiments, we can measure and track position
robustly. Over 70% of our localization attempts, we return
either the closest trained position or an adjacent trained
position, i.e. we achieved 1.5 meters accuracy. Although
this may seem as a large error for indoor localization, it
must be noted that errors are not accumulated as in the
case of odometry and that this sensor comes almost for free
since we achieved this level of accuracy in a complex indoor
environment by employing commodity 802.11b Ethernet
equipment. The map of the building we operated in can
be found in Figure 2, it had fairly complicated geometry
and the base stations were laid out more than a year before
we began our work. We did not make any changes to the
original base station locations in our building.

Figure 3 and Figure 4 show tracking experiments that
took place in hallways 1 and 3 of our building correspond-
ingly. The operator walked down the hallway, indicating
the exact time that certain milestones were passed, giving
us an accurate measure of the operator’s true position to
compare against the localization results. In the figures, we
report both the Bayesian inference static localization re-
sults and the HMM fused results. In figure 3, a significant
improvement is obtained and, overall, the results are ex-
cellent. In Figure 4, the signal was much noisier due to a
relatively poor base station placement. Note that in both
cases, errors of 1.5m are still roughly within one standard
deviation.

IV. SUMMARY

Bayesian techniques applied to signal strength measure-
ments from 802.11 Wireless Ethernet allow for real-time
and accurate localization. Our work provides a strong in-
dication that both human and robot agents can use their

existing wireless network interfaces, that currently serve
only as communication devices, as a low-cost localization
sensor. The infrastructure for such networks already ex-
ists in many real-world environments and consequently our
scheme can be implemented as a software-only solution.

The experiments were conducted by human operators
which introduced error due to signal absorption and lack
of odometry. Nevertheless, the results are valid for localiza-
tion carried with different hardware or with a mobile robot.
In fact, similar experiments carried out with a robot would
likely be significantly more precise as we avoid absorption
errors induced by the operator and have odometry as an
additional sensor. Furthermore, there was no effort to im-
prove the quality of the localization procedure by placing
the base stations so as to better cover the area where the
experiments took place. In an indoor environment, the
multi-path fading phenomenon, interference, absorption,
reflection and refraction can not be avoided. However, our
results suggest that signal strength measurement from the
802.11 Wireless Ethernet devices are useful cues for local-
ization.

There are many interesting open problems related with
the use of wireless Ethernet as a localization sensor such as
the behavior of the signal in dynamic environments. Most
of our experiments were taken during the night. During
daytime, new problems in localization arise both from the
absorption of signal strength from human bodies and from
the heavier network traffic. Furthermore, the framework
we have proposed is not restricted to corridor localization
where the laptop operator or the robot is forced to walk al-
most on a straight line. Experiments in large open rooms
and on multiple floors can provide further insights on the
functionality of wireless Ethernet as a sensor for localiza-
tion. Last but not least is the issue of base station loca-
tion. Poor initial placement of base stations can severely
decrease the efficiency of localization attempts. Techniques
that can provide suggestions for the number and the place-
ment of base stations in order to efficiently cover an envi-
ronment can significantly improve the performance of lo-
calization methods.
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