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Abstract

This paper presents a novel analysis of the probabilistic
roadmap method (PRM) for path planning. We formulate
the problem in terms of computing the transitive closure
of a relation over a probability space and give a bound on
the expected number iterations of PRM required to find a
path in terms of the number of intermediate points and the
probability of choosing a point from a certain set. Explicit
geometric assumptions are not necessary to complete this
analysis. As a result the analysis provides some unifica-
tion of previous work. We provide an upper bound which
could be refined using details specific to a given problem.
This bound is of the same form as that proved in previ-
ous analyses but has simpler prerequisites and is proved on
a more general class of problems. Using our framework
we analyze some new path planning problems, 2k-dof kin-
odynamic point robots, polygonal robots with contact, and
deformable robots with force field control. These examples
make explicit use of generality in our approach that did not
exist in previous frameworks.

I. INTRODUCTION

Planning a collision-free path for a rigid or articulated
robot to move from an initial to a final configuration in a
static environment is a central problem in robotics and has
been the topic of extensive research over the last decade [1],
[9], [11], [28]. The complexity of the problem is high and
several versions of it have been shown PSPACE-hard [28].
Interesting applications and extensions of the problem exist
in planning for robots that can modify their environments
[12], [33] and flexible robots [3], [26], planning for graph-
ics and simulation [24], planning for virtual prototyping
[8], and planning for medical [39] and pharmaceutical [10]
applications.

This paper concentrates on the analysis of PRM [23], [20],
[36]. Since the early nineties, when PRM was invented, sev-
eral researchers have reported on the advantages of the
planner for various motion planning problems, particular-
ily for robots with many degrees of freedom. Several varia-
tions of the method have been developed (e.g., [2]), several
planners that bear resemblances with the original PRM have
been introduced (e.g., [15]), and several extensions of the
basic path planning problem have been solved with PRM-
based methods (e.g., [33]). The experimental success of
the planner has motivated many researchers to seek a the-
oretical basis for explaining its performance and relative
successes in this direction have been reported, among oth-
ers, in [22], [20], [36], [37], [21], [35], [14], [5, [29], [6], [15],

[12], [7], [16]. This paper presents a further extension in
this direction by using the mechanism of measure theory

[4].

Algorithm 1 Operation of Basic PRM

1: Generate N points at random.

2:  Connect the points with the local planner and obtain
a directed graph G.

3: for each query of the form ‘is there path from z to y?’
do

4 Add z and y to point set and attach them to G.
5 if a path from z to y lies in G then

6: return the computed path.

7 else

8 return no path is found.

9: end if

10: end for

The core operations of basic PRM are summarized in Algo-
rithm 1. Points are generated at random from a probability
distribution over the configuration space of the robot. The
local planner is a computationally inexpensive heuristic for
determining if there is a path between two given points.
The local planner is usually not complete and will fail in
some cases. However, if the local planner is sufficiently
powerful and some path exists, a path can eventually be
guessed. The relationship between the number of guesses,
N, and the probability of finding a path between two given
points is the subject of the analysis of PRM. In practice, PRM
has proven to be suprisingly effective for certain applica-
tions and seems to be exploiting the fact that there are
points that can be connected to many others.

Typically, there are two related questions that one asks
about PRM operation.

1. How quickly can we find a path between some x and y?
2. How quickly can we find most of the paths?

The first question is usually addressed by isolating a par-
ticular path and showing an equivalent path can be con-
structed with a certain probability [21], [5], [36], [23], [37].
The second question is often dealt with by a space covering
argument [22], [12], [15], [25].

The key difference in the treatment in our paper is the
abstract reformulation of typical path planning problems
to isolate the essential properties which allow us to analyze
PRM. We capture the properties of a path planning task for
a single path in terms of two simple constants. We relate
these constants to previous analyses to suggest ways that
they can be bounded in practice. Certain notions from



an analysis such as [21] will be replaced with more general
ideas. We will now describe some of the previous work that
our treatment draws from.

Path Isolation Method

A common technique for analyzing PRM is to consider
motion planning for point robots in open subspaces of RY.
An example of this kind of analysis can be found in [21].
A single path is isolated and then analyzed by tiling with
simple shapes or buckets. The analyses in [5], [21], [36] and
[23] take this approach. The simple shapes used in these
papers are e-balls where € > 0 is related to the path clear-
ance, the minimum distance of a path to the obstacles. The
point, choosing function is assumed to have distributions
proportional to the volume of the balls. A result relating
the probability of failure to the length of the isolated path
and e-clearance was given. An extension of this result was
made for when e varied along the path. Finally, this result
shows that the probability of failure of finding a particular
path goes exponentially to 0 as the number of milestones
increases. The simplest of these results is related below.

Theorem I.1: [21] After generating N points in the free
space F C [0, 1]¢ with the uniform distribution and joining
them with straight lines, the probability of failure for find-
ing a path of length L from point a to point b with path
clearance € was found to be

d

2L
Pr[FAILURE] < ~Ze=@a¢" N,
€

where oy = ‘]?J‘—de and wy is volume of the unit d-ball.

An extension to this technique can be made for small
time locally controllable robots [38] such as car-like robots
and tractor trailer robots. The property exploited is that
for every point  and € > 0, there exists § > 0 such that
any point within § distance of z can be reached by taking
a path that stays within the e-ball around . A path with
€ clearance can thus be tiled with -balls. Again the prob-
ability of failure was shown to decrease exponentially as
N increases. A proof for car-like robots that cannot drive
backwards was also achieved in [37].

Space Covering Method

In [22], the notion of e-goodness was described in an at-
tempt to obtain the rate of total coverage of the free space.
A space is e-good if every point in the free space can ‘see’
more than an e fraction of the space with the local plan-
ner. The spaces discussed were simply connected compact
sets with measure 1. This paper showed how to bound
the number of the guesses required to get an ‘adequate’ set
of points in terms of €. PRM has succeeded if an adequate
set of points can be produced. It has been shown how to
construct for any k an example of an 5/9-good polygonal
space such that the space could not be completely covered
by k points[40]. This disproved a conjecture in [22] that
the number of points required to completely cover a polyg-
onal configuration space was polynomial in the number of
holes and the dimension. However, some evidence that

the disconnected fraction of an e-good space will decrease
asymptotically to 0 was given.

In [12], an extension to e-goodness using expansive spaces
was considered. This work further formalized the no-
tions of reachability and made use of measure in some
sense. Concisely, for a connected set of points S, the
# — LOOKOUT(S) is the subset of S whose points ‘see’
using the local planner more than a § fraction of the
set of points which can be ‘seen’ from S. A space is
(a, 8) — EXPANSIVE if the subset 8 — LOOKOUT(S)
is always larger than an « fraction of the measure of S for
every connected subset S of the points reachable from any
point in free space. Again this work provides a bound on
the number of points in terms of «, § and e required to
generate a path as shown below.

Theorem 1.2: [12] Let v € (0,1] be a constant, M be a
set of 2n 4+ 2 points chosen independently and uniformly
at random in free space F which breaks into connected
components J;. Let G; be the roadmap defined by M on
Fi.o It

n > 81n(8/eay) + 3/,

then with probability 1 — «, GG; is connected.
This work was also useful when discussing probabilistic
completeness of kinodynamic planners [15].

Key Concepts and Motivation

Our work began with the observation that the simple
geometric shapes used to tile a path in a path isolation
argument, e.g., e-balls of [21], can be replaced with sets
of strictly positive measure. These sets are not necessarily
connected, open or even infinite. The probability distri-
bution of point generation in Algorithm 1 can be replaced
with a computable probability measure. The configura-
tion spaces can be replaced with the more vague notion
of state space without any explicit geometric assumptions.
The predicate of reachability and the local planner are for-
malized with binary relations with the local planner being
a subset of the reachability relation. The reachability is
assumed to be transitive and both are assumed to have
certain measurability properties.

Results and Outline

Our main result provides a bound on the expected num-
ber of points to generate to find a path from z to y using
Algorithm 1 in terms of two space dependent constants n
and p. The constant n is a kind of path length and the
constant p is a generalization of path clearance. We also
show that the probability of failure goes exponentially to
0. The result holds if and only if it there is positive proba-
bility of finding a random walk from z to y. In particular,
if the probability of finding a random walk is zero then Al-
gorithm 1 fails to find a path with probability one. We also
provide a simple property to satisfy which is equivalent to
probabilistic completeness, which in turn guarantees that
some admissible n and p exist.

In the next section, we will formulate the problem intu-
itively. In Section III, we present preliminaries and nota-
tion. Following that, we prove the main result. The next



three sections contain examples that show the power of our
work in analysing path planning problems that could not
be as easily addressed before. The final section is a discus-
sion.

II. PrROBLEM FORMULATION

Our objective is to analyze the operation of Algorithm 1
for a given state space, set of valid paths, local planner and
random point generation distribution. We seek to connect
the value of N required to guarantee sufficiently low prob-
ability of error in PRM in terms of the local planner and the
random point generation distribution.

Take a set X to be the free state space for a robot. This is
taken to mean the entire set of distinct and allowable states
the robot can assume. For example, this might be the
configuration space with some extra information as to the
state of the robot which is relevant to the planning problem,
e.g., time, memory contents, velocity or the amount of fuel
left. The path reachability relation is transitive, i.e., if x
reaches y and y reaches z then x reaches z. This is a natural
assumption which expresses what is intuitively understood
by state space and path reachability. Note that symmetry
and reflexivity are not enforced. If X encodes time, for
example, path relations would be necessarily asymmetric.

The local planner can also be thought of as a binary
relation over X. This relation, which we will call R, is
not necessarily transitive. For example, a common local
planner is a straight line local planner. It may be that a
two segment path exists but a direct path passes through
an obstacle.

A computational method that chains points together
with a local planner has a hope of success if any valid path
can be broken down into a finite sequence of states x4, ..., 2,
such that 1Rz - - - xp_1 Rxy. If 2o, ..., 2, 1 are present in
the roadmap then a query of ‘does z; reach z,?7’ will be
answered correctly. PRM can also return this sequence, from
which the path can be reconstructed and executed [23].

PRM has a chance of finding a path in the case where
the transitive closure of our local planner R, denoted R,
is the path reachability relation. Cases where the closure
and the path relation do not agree will be discarded - the
algorithm fails in these cases. For example, for a robot
capable of moving in a planar box along any continuous
curve, a poor choice of R would be a local planner such that
(z,y) reaches (z',y") when z < 2’ and y < y’. Some paths
are unrealizable with such a local planner. We propose an
abstract rephrasing of the general path planning problem
with PRM. We are randomly determining membership in the
transitive closure of the local planner.

III. PRELIMINARIES

This section contains preliminaries, background, nota-
tion and describes the framework in which our analysis
takes place.

A. Measure Theory Review

We first review abstract measure theory which is the lan-
guage that our analysis is carried out in. We define measure

space, product spaces, measureable functions, briefly dis-
cuss integrals and conclude by defining probability spaces.
Our analysis of PRM proceeds by treating the state space
as a probability space. These assumptions conviently in-
corporate various notions of sampling, topology, geometry
and local planning.

A.1 Measure Spaces

A measure space (X,Xx,u) consists of a set X, o-
algebra Y. x over X and a measure u. A oc-algebra over
a set X is a collection of subsets of X that satisfies
1. (Z) € Ex,

2. forall Ae Xx, X — A€ Xy,

3. for any countable or finite indexing set I, and any col-
lection of sets A; € ¥x indexed by i € I, J;c; 4i € Tx.
In other words, o-algebras contain the empty set and are
closed under complementation, finite and countable unions.
The o-algebra in a measure space is the set of the ‘measur-
able’ sets.

A measure y is a function defined from Y x to R=° which
assigns a ‘size’ to every measurable set. To be a well-defined
measure, two properties must be satisfied:

L u(®) =0,
2. for any countable or finite indexing set I, and any col-
lection of pairwise disjoint sets 4; € ¥ x indexed by i € I,

p (U Ai> =" u(A).
iel il

A2 Constructing o-algebras

Let S C 2% be any collection of subsets of X. By o(S),
we denote the smallest o-algebra containing S. It can be
shown that this construction is unique [4].

A.3 Borel Algebra

A topology for a space X is the collection of subsets that
are ‘open’ in X. If X has a topology Tx, then the Borel
o-algebra, sometimes written B(7x), is o(Tx).

If X =R and Xx is the Borel g-algebra for R, a natural
measure p is defined by its operation on a closed interval
A = [a,b], p(A) = |b — al]. We sometimes refer to it as
the usual measure for R and it can be extended by taking
products to R™.

A.4 Product Spaces

Let (X,¥x,ux) and (Y, Zy,puy) be measure spaces.
There is a natural product construction for a product mea-
sure space (X XY, X xxv,uxxy).- The o-algebra is chosen
as Yxxy = o(Xx X ¥y). The sets in Xy x Xy are called
‘rectangles’. It can be proved that every measurable set in
the product can be written as a pairwise disjoint union of
rectangles. This uniquely determines the action of pxxy
by the following equation

pxxy(C) = pxxy ([j A; x Bi) = iMX(Ai) “py (Bi).

i=1



Given a measure space (X, X x,ux), we can define the
product space (X™, %, u%) by the n-fold product con-
struction as described above.

A.5 Measurable Functions and Integrals

Let (X,Xx,ux) and (Y, Xy, puy) be measure spaces. A
function f : X — Y is called measurable if for every
BeXy, f1(B)€Xx. If X and Y are topological spaces
together with their Borel ¢-algebras, then continuous func-
tions between X and Y are measurable.

Let (X,Xx,ux) be a measure space. For any A € ¥y,
the characteristic function X4 : X — {0,1} is defined by
the rule X 4(z) = 1 if and only if © € A. Any measurable
function f : X — R is a simple function if it can be written
f(z) = cXa(x) for some A € £x and ¢ € R. We can define
integration over such a simple function by the rule

[ 10dx = enx ().

This rule holds for sums of n simple functions fi, ..., fn,

/Zfz’(')d,ux = ZCiMX(Ai)~

It is an important theorem of measure theory that any
measurable function from a measure space X to R can be
written as the limit of sums of simple functions. Further-
more this can be realized so that the limit and integral can
be interchanged. This theorem is the underpinning for the
integration theory that measure theory develops [34].

A.6 Probability Spaces

We say that (X, X x, ux) is a probability space if pux is a
probability measure. A probability measure p satisfies the
equation pux(X) = 1.

B. Basic Definitions of X, p and R

We now begin the analysis of Algorithm 1. To do this,
we will first define the state space, X, the local relation R
and probability measure p which will represent the prob-
ability distribution of our point generating function. We
will require that X forms a probability space with measure
p and that R be a ‘measurable relation’.

As stated earlier, the set X will be the set of distinct
and valid states the robot can assume. Let the set ¥ C 2%
be a o-algebra for X. For example, a natural choice for
this would be Borel algebra in the case where X has a
topology [34]. Let function u : ¥ — [0, 1] be a probability
measure on (X,Y). If a is the random variable indicating
a point chosen from X at random by the sampler and A is
a measurable subset of X, Pr(a € A) = u(A). In short,
(X, X, 1) is a probability space.

The local planner is described by a relation, R, over the
set X. This relation will have the additional restriction
that it is measurable, in other words R € ¥2. This is a
natural assumption which, according to our understanding

easily covers planning as we understand it today. The no-
tation is given by the identity xRy < (z,y) € R € X2. z
reaches y is meant by zRy.

Another representation for R is as the characteristic
function for the set R, which is more convenient for our
purposes:

0 for (z,y) € R,

Xr(@,y) = {1 for (z,y) € R.

The preimage of the above function is R, i.e., R = X;il(l).

C. Transitive Closure

Algorithm 1 seeks to sample X to learn facts about R
inferred by using R. In this subsection we give a formal
definition for R and prove that it is a measurable subset of
X?2. This will be achieved by studying an iterated product
construction. The objective is to show consistency in our
definitions and to build some functions which will be used
in the main result in Section IV.

The function Xg is measurable and can be easily ex-
tended to n-ary analogues as follows. We will define a fam-
ily of functions f, : X™ — {0,1} for which f,(z1,...,z,)
will be 1 if there is a path using R along the points 1, ..., x,
and 0 if there is no such path. In this notation, Xg is f2
and f, is given by

n—1

folz1, .oy zn) — H Xg(xi, iy1).

i=1

In other words, f,(z1,....,2,) =1iff z;R--- Rx,,.

Another useful version of this function will be written
f2¥ and defined as f2¥(z1,...,2n) := fot2(T, 21, ..s Tn, Y).
fo¥(x,...,zp) is 1 if and only if 24, ..., 2, is a path using
R from z to y.

Finally, the transitive closure can be defined formally as

R={(z,y) € X230, 2, ooy Ty (@, X1y ey Ty y) = 1}

The following propositions are proved in the Appendix
and are important to show that our definitions are consis-
tent. The second proposition is used explicitly in the proof
of the main result in Section IV.

Proposition II.1: f,(z1,...,z,) is a measurable func-
tion.

Proposition II11.2: fX¥ is measurable for every z,y € X.

Proposition IIL3: R is a measurable subset of X?2.

D. Guessing a Path ot Random

We will define a simple algorithm for path planning
which tries to connect two points with a random walk. We
will show that if this algorithm is probabilistically com-
plete then so is Algorithm 1. Given a probability space
(X, Xx,u) and a local relation R, Algorithm 2 attempts to
find a random walk from a point z to a point y using R
and sampled from p.

‘We will now define R which will be a relation such that
xRy if and only if Algorithm 2 succeeds with probability



Algorithm 2 Random Walk Planner Given a Query (z,y)
Set xg = .
Set n = 0.
loop
Check if z, Ry, if so return zg, ..., z,,y as the com-
puted path.
Generate z,1 at random.
Check if z, Rt py1, if not return no path.
7. end loop

@«

greater than 0. We have defined three relations: R, the
relation describing the local planner, R, the relation de-
scribing Algorithm 2, and R, the transitive closure of R. Tt
is obvious that the following chain of inclusions holds

RCRCR.

The following lemma shows the consistency of our def-
inition as well as providing an alternate construction for
R.

Lemma II1.4: R is a measurable subset of X2.

In the proof of this lemma, which can be found in the
Appendix, the following observation is made.

Corollary 111.5: xRy if and only if there exists n such
that

W ((F207H (1) > 0.

Finally, we can prove a final result about completeness.

Theorem IIL.6: If (x,y) & R, then Algorithm 1 will find a
path from z to y with probability 0. In particular, if R £R
then Algorithm 1 will not be probabilistically complete for
all queries.

For example, suppose X € [0,1]? and p is the Borel
measure on X. If due to constraints on R, finding a given
path required guessing a point from a singleton set then
for that query the probabability of success would be 0.

IV. OBTAINING A BOUND FOR N

The main result presented in this paper is a bound on
the expected number of points needed to be generated in
order to determine membership in R. This bound is for
any query (z,y) € R. We know that if this assumption
does not hold but (z,y) € R, then Algorithm 1 always fails
on that query. The method of proof will be to reduce the
problem of finding a path between two particular points to
a standard problem in discrete probability; the following
lemma will be used.

Lemma IV.1 (Coupon Collector[31]) To win a prize in a
contest held by a breakfast cereal company, it is necessary
to obtain at least one of each of n coupons in the boxes.
The coupons are placed in the boxes according the uniform
distribution, one per box. The expected number of boxes
one must buy to get the prize is

E(N) =nH(n),

where H(n) is the nth harmonic number. H(n) is ©(logn).

FINISH

Fig. 1. A free path in state space and an illustration of the coupon
buckets. Note that buckets Az and As are disconnected.

The approach used in this paper is inspired by path tiling
arguments such as [21] and [5]. In this line of argumenta-
tion, a covering of the path with balls is exhibited. This
covering has the property that guessing a point inside each
ball guarantees that the path has been found. This is very
similar to a Coupon Collector game. The balls are the
coupons in the game and can be thought of as buckets.
If a randomly generated point lands in a bucket, then the
associated coupon has been chosen.

To apply this proof scheme, the existence of certain buck-
ets of strictly positive measure will be shown. These buck-
ets will be such that guessing at least one point from each
ensures that PRM has computed a path.

Theorem IV.2: If it is possible to find a path from z to
y using Algorithm 2 with strictly positive probability, the
expected number of random points needed to be generated
for PRM to successfully compute a path from z to y using
R, E(N), satisfies the following inequality

E(N) < el

for constants n and p.

Proof: ~ Suppose xﬁy for a given z,y € X. We
know by Corollary 1I11.5 that A = (f*¥)~!(1) is such
that p"(A) > 0. It follows that there is a rectangle
Ay X -+ x A, C A such that u(4;) > 0 for each i by
the definition of u™. Notice that for any sequence z1, ..., z,
with x; € A;, tRx1 R+ - - Rz, Ry holds.

PRM will certainly succeed if a point from each A; can
be guessed. Since they each have positive measure this
will eventually happen, however we would like to obtain a
bound as well.

Each A; can be thought of as a Coupon Collector bucket.
For an illustration look at Figure 1. We will ignore points
that land outside of the distinguished Ai,..., 4, in order
to obtain an overestimation of E(N). Also, we will assume
that the A; are disjoint - otherwise if a point is guessed
which is in multiple buckets it can be randomly reassigned
to a single bucket to obtain an overcount of E(N).

Let p = min p(A4;) and conservatively take all the buckets
to have measure p. Again this produces an overcount and



we conclude that with probability at least np a point in at
least one bucket is guessed.

We will define a sequence of random variables Y; counting
the number of guesses that are necessary, after the (i —1)th
point has been guessed, in order to guess the ith point. The
random variable T will count the number of guesses in any
bucket required to obtain at least one guess in each bucket.

It follows that E(N) < E (ZL Y) Note that the V; are

independent and identically distributed. Furthermore, the
Y; are independent of T. These observations allow us to
conclude that £ (Zszl YZ) = E(T) - E(Y1).

By Coupon Collector we know that E(T') = nlogn (since
there are n buckets) and E(Y;) = 1/np, the inverse of the
probability of landing in some bucket. The final inequality
follows. u

Corollary 1V.3: After guessing N points, we can write
the probability of not having guessed the path, P, as

P <n(l1-p".

Proof: This can be seen by applying the union bound,
namely Pr(\/ F;) < Y Pr(F;). In our case, F; says that
bucket i is empty after N point guesses. Pr(F;) < (1-p)&V
and there are n such Fj’s. |

The limiting part of bound of Theorem IV.2 is p. Our
analysis allows for the use of sets which may not have sim-
ple geometric shapes thus extending the palette of sets of
positive measure that we could use to find a lower bound
for p. An alternate way of viewing p is as a generalization
of path clearance.

Synopsis and Examples

Up to this point in the paper we have developed and
proved Theorem IV.2. We continue by giving several ex-
amples that can be analyzed in a novel way by applying
the main result and the techniques used to derive it.

1. In the first example, we consider 2k-dof kinodynamic
robots. These are point robots in R* with the & velocities
as part of the state space. We give a short proof which
illustrates a general technique for proving R = R. Also we
show that by using disjoint, oddly shaped buckets, we can
improve our bounds over methods which use only balls.

2. In the second example, we describe a problem consist-
ing of a polygonal robot moving in a polygonal workspace.
Contact at the boundary is permitted and consequently
computing path reachability with a probabilistic planner is
a challenging task. To construct an appropriate local plan-
ner and sampling distribution, we proceed by introducing
a general construction of measures for an important class
of topological spaces. The general construction is then ap-
plied to obtain an admissible planner.

3. The third example gives a construction for path plan-
ning with a deformable robot with no fixed parametrization
under energy constraints. We propose a solution using a
partial order of subdivision spaces and argue that for any
path, a similar path appears at some subdivision level. We
then show how a planner can be constructed that plans
over all subdivision levels. Although the example is not

worked out to the last detail and questions of efficiency are
not considered, we show how we can build path planners
for non-manifold spaces with no fixed parametrization, a
result which is first suggested in this paper.

V. 2k-DOF KINODYNAMIC ROBOTS

We begin by summarizing the known single path anal-
ysis of a k-dof holonomic robot and then discuss issues
surrounding the extension to 2k-dof kinodynamic robots.

The workspace for this example will be a k-manifold
W C [0,1]*. The state space is the workspace, X = W.
The random sample function has the distribution induced
by the Borel measure on [0, 1]¥ normalized to be a proba-
bility measure.

Consider a fully holonomic robot operating in this
workspace with a local planner that connects points with
a straight line. This analysis closely parallels [21] and [5].

The buckets (as in Theorem IV.2) for k-dof point robots
can be constructed and used to get more explicit bounds
on E(N). Let u(Bs(-)) be the measure of an open -ball in
X.

Proposition V.1: Suppose we have some path with € path
clearance and length L. Then

) < FRL/OHX)
Proof: Let v :[0,1] - X be a simple path from =
to y. Let € > 0 be the path clearance and suppose  has
length L. We see in [5] that v can be tiled with balls of
radius €¢/2 and that 2L/e balls are sufficient. We can set
n = 2L/e and p = p(B./2("))/u(X) and then the result
follows from Theorem IV.2. |
Estimating E(N) is made more difficult by considering
velocities, making the problem a much more complex 2k-
dof problem. Some progress in this direction has been made
[15], [25]. We show that PRM succeeds but that ball tiling
arguments as in [21] are inappropriate for this problem.
The shapes of the buckets we need are disconnected and
dependent on the input points.

The workspace once velocities are considered is a k-
manifold W C [0,1]* and the state space of the robot is
X = W x (=1,1)%, which encodes position and velocity.
The robot can be controlled by applying a constant accel-
eration in the range (—1,1) for a constant non-zero time
period. In 1-D, the local planner that we use tries to con-
nect position (z1,v1) with (z2,v2) by taking
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In £-D, we solve each dimension independently and cases
where either acceleration is too large, acceleration is zero,
singularities arise or the time increment is non-positive are
not considered to be solutions. We refer to this local plan-
ner as R in the following. We note that given a C! path
between two points, a path made of piecewise constant
second derivatives which arbitrarily well approximates the
first path can be found [34].

The claim we will establish is that for a given primitive
path, xRy, we can move the endpoints around in open



Fig. 2. The grey area denotes the set of points b for which aRbRc
for given a and ¢ for 1-d robot. The x-axis is position and the y-axis
is velocity.

neighbourhoods without breaking the path. Together with
closure of open sets under intersection, we show this fact
is enough to conclude that R = R.

Let Y = {(z,v,y,w) : (z,v)R(y,w)}. For every T =
(z,v,y,w) €Y, |z—y| >0and |v £ w| >0, so Je > 0such
that B¢(Z) C Y. It follows that Y is 4-manifold.

The point guessing distribution, u, that we use has
positive measure on open sets. Suppose (x1,v1)R(z2, v2)
R(x3,v3). There exists ¢ > 0 such that (zh,v5) €
B.(x2,v2) is such that (z1,v1)R(xh,v5)R(z3,v3). Since
p(Be((x2,v2))) > 0, we have a probabilistically complete
path planner, i.e., R = E, and Theorem IV.2 applies.

In this example, n and p also depend on the input points.
In Figure 2, we can see a possible solution space for a plan-
ning problem with a single intermediate point in 1-D, the
vertical axis being velocity and horizontal axis being posi-
tion. It was computed by sampling the kinematics equa-
tion. The shape depends heavily on the start and finish
points and is disconnected. The measure of the set, how-
ever, is a significant fraction of the measure of the smallest
disc which encloses all of the points. An analysis based on
ball shaped buckets would not be able to take this properly
into account. By explicitly taking into account the shape
of the buckets we can obtain tighter bounds.

VI. PLANNING WITH CONTACT

In this section, we describe a class of path planning prob-
lems for simple polygonal robots operating in a polygonal
workspace. The boundary of the robot is allowed to make
contact with the boundary of the obstacles. Certain in-
stances of path planning tasks in this class can be made to
require that the only paths between certain pairs of config-
urations necessarily touch the boundary. It can be shown
that the usual measure on the set of transformations fails
to solve this problem. One has only to consider an ex-
ample which requires passing through some point in a set
of boundary points. Since the measure of the boundary
is zero, no solution can be found by the usual sampling
techniques. This problem can be fixed by taking a differ-
ent measure. We give a general construction for a measure
that allows us to show that path reachability for any fi-
nite CW complex can be computed with PRM. The random
sampling techniques are similar in spirit to those discussed
in [17], [19], [18]. The resulting planner will be proved to
be complete which to our knowledge is a novel result. Our
analytical technique is general and supports further exten-
sions into 3-d, perhaps by using the methods from [17],

[19], [18] or a similar approach. The reasons why we chose
CW complexes are explained further. We end this section
by showing how the polygonal robot problem we suggested
can be related to this framework and sketch a full solution.

A. Polygonal Robot with Contact

Let P be a simple polygon with vertex set {p1,...,pn}.
Let T = S' x R? be the set of transformations that embed
P into R?. We interpret (6, a,b) € T to be a rotation about
the origin by 6 followed by translation by (a,b). r € T
applied to P transforms P into r(P).

Let 01, ..., 04 be a set of triangles in [0, 1] such that they
have pairwise non-intersecting interiors. Let O = |Jo; be
the polygonal obstacle space and let Int(O) be the interior
of those obstacles. We can now define the free configuration
space, X, by

X ={reT:r(P)NnInt(O) =P and r(P) C [0,1]?}.

X will take the induced topology from T. The path
reachability relation is defined in the usual way, by exis-
tence of a continuous map v : [0,1] = X.

The task is to find a probability measure p and appro-
priate local planner R so that PRM computes the desired
path reachability relation. Observe that under the usual
measure, the set of all contact configurations has measure
0. We also require that R be easily computed.

B. Finite CW Complexes

Many PRM analyses in the literature have been for strictly
manifold configuration spaces where the reachability rela-
tion was path reachability. We will describe how PRM can
be used to calculate path reachability for a certain class
of non-manifold configuration spaces with a useful struc-
ture called finite CW complexes. The name CW is due
to J.H.C. Whitehead and refers to Closure-finiteness and
Weak topology, two defining properties of CW complexes
[32].

The importance of CW complexes arises in part from be-
ing a very general class of topological spaces for which there
is a systematic way of computing homologies. In particu-
lar, a CW complex can be decomposed into a set of cells,
where each cell is a connected k-manifold for some k. We
give a way to extend the computation of path reachabil-
ity in each individual cell to path reachability over a space
composed of many cells.

The simplicity of CW complexes derives from their def-
inition. They are defined inductively. We call Xy the 0-
skeleton. Xo is a finite union of closed 0-balls (points).
Given a k-skeleton Xy, we construct the k& 4+ 1-skeleton by
considering a finite union of closed &k + 1-balls, Z;, 1. Each
ball B € Zj4 is called a cell of dimension £ + 1. We
observe that Z;4; is a k 4+ 1-manifold with boundary and
denote its boundary by Bd(Z11). Let f : Bd(Zyy1) = Xi
be continuous. Xg41 is the space obtained by identifying
points of Xy U Ziy1 according to the map f. This iden-
tification can also be thought as defining a quotient map



v: XpUZgy1 = Xgp1. For every k, a space X con-
structed in this fashion is a finite CW complex. A finite
CW complex is clearly compact.

For example, to obtain the CW complex for a torus,
we begin with a point a and two lines ! and m to this
point to obtain two loops. Then a disc is attached to the
loops by winding it along I, then along m, then along [ in
the opposite direction and then along m in the opposite
direction.

In Section IV, we gave Theorem II1.6, a necessary and
sufficient condition for completeness. We will now give a
sufficient condition for completeness which has natural and
convenient statement for CW complexes and further illus-
trate its use by applying to the contact robot problem we
described. We choose to give only a sufficient condition in
this case as it makes the treatment much simpler.

Theorem VI.1: Let X be a finite CW complex with de-
composition Xg C --- C X,,. Suppose we are given a mea-
sure g and a local planner R such that for every cell B,

1. if A C B is open and non-empty in B, then p(A4) > 0,
2. if zRy with y € Int(B), there there exists A C Int(B)
such that A is non-empty and open in B and ¢y’ € A implies
zRy',

3. R is symmetric and R contains path reachability for B.
It follows that a PRM planner using p and R is probabilis-
tically complete for computing path reachability in X.

A proof of this theorem is given in the Appendix.

It is interesting to note that path reachability is not com-
putable in general using the scheme we described without
the caveat that a CW complex is finite. A counterexam-
ple where the transitive closure of the local relation is not
path reachability can be formulated. It is a spiral of boxes
which tiles the unit rectangle. The center point of the spi-
ral is singular and is disconnected in the transitive closure
of the local planner we gave. The unit rectangle has a
much simpler finite CW complex which avoids this prob-
lem. Oddly enough, many infinite CW complexes do not
have this problem, for example the Hawaiian Earring [32]
or a non-compact k-manifold. A finer distinction can be
made by requiring the complexes to be such that any two
path-connected points have a connecting path which passes
through finitely many cells.

C. A Solution to the Contact Robot Problem

Now that we have developed Theorem VI.1, we return
to the problem described at the beginning of this section.
To provide u, an appropriate probability measure, and R,
a computable local planner, we will show that X, the con-
figuration for a polygon robot in contact, is a finite CW
complex and then apply Theorem VI.1. To do this, we will
provide explicit parametrizations for each of the subspaces
and define a straight line planner and measures. The main
result of this section is stated as follows.

Theorem VI.2: X is a finite CW complex. There is an
explicit measure and local planner for X that satisfy the
conditions of Theorem VI.1.

Once we have proven this theorem, we can invoke Theo-
rem VI.1 and Theorem IV.2 to prove that the constructed

planner is probabilistically complete. Since the proof re-
quires an explicit construction of parametrizations of a de-
composition of the space, the construction engenders an
implementation of this planner. Although we give a more
complete version of the full argument in the Appendix, we
will sketch the main steps of the proof. To proceed, we will
first define contact constraints.

The boundary of the obstacle space, O, can be decom-
posed in a set of vertices vy, ..., vy and set of edges eq, ..., €.
Similarily, we have vertices from the robot pi,...,p, and
edges s1, ...,5,. Let 7 € X be a configuration of the robot.
The contact topology of r is a list of constraint pairs of the
form (v;,s;) or (e;,p;). We will define P as the collection
of all subsets of constraint pairs. For any z € X, we write
a(z) as a unary relation to say that z satisfies constraint
a. We also say that a < fifa C fanda < Sifa Cf
and a # .

For a given «, we will outline explicit parametrizations
for spaces of candidate points satisfying «. This is writ-
ten in the Appendix. We can now describe the sampling
function we will use.

Algorithm 3 Sampling for Contact Robot (u)

1: loop
2: generate a random constraint « such that |a| < 3.
3: from the parametrization for points satisfying «, gen-

erate a candidate point, z, using uniform sampling.
if x € X then return z.
5: end loop

=

The local planner is defined similarily.

Algorithm 4 Local Planner for Contact Robot: zRy
find @ maximal such that a(z) and a(y).

2: find the straight line [ in the parametrization for «
between x and y.

3: check if | C X, if so, return true.
otherwise, return false.

The subspace Z, consists of all points which properly
satisfy constraint «. A formal definition is

Zog={r € X :a(z) and f(z) = 8 < a}.

Now, we will prove some technical lemmas. The first
lemma states that every point of X appears in exactly one
Zy. The second lemma requires a more intricate argument
and must be proved case by case. It states that the non-
empty Z, are ky-manifolds.

Lemma VI.3: The Z, are pairwise disjoint and their
union is X.

The proof of this lemma. follows directly from the defini-
tion of Z, and is related in the Appendix.

Lemma VI.4: For every a, either Z, = () or there is an
integer 0 < k4 < 3 such that Z, is a k,-manifold.

The proof of this lemma is dealt with in the Appendix.

Theorem VI.2 requires first proving that X is a finite
CW complex. This is done by using cell structure defined



by the Z,. Lemma VI.4 states that Z, are manifolds and
Lemma VI.3 states we have exhausted the space. The cell
structure is defined for 0 < d < 3,

Xo= | Za
akqe <d

Although the argument we relate for showing the proba-
bilistic completeness of the planner we constructed for solv-
ing the polygon robot with contact problem is intricate,
it is greatly simplified by being able to appeal to Theo-
rems IV.2 and VI.1. The resulting planner, as described
by Algorithms 1, 3 and 4, is also algorithmically concise.
Although it is intuitive that this algorithm would be prob-
abilistically complete, proving that it is the case is well
beyond the scope of the earlier completeness proofs for PRM
that appeared in the literature.

VII. DEFORMABLE ROBOTS

In this section, we consider motion planning with de-
formable robots controlled by force fields. This section will
sketch how to show probabilistic completeness of the path
planner. There will be little emphasis on the control and
simulation of parametric deformables, an interesting topic
on its own.

An example of planning for deformable robots developed
in [27] is that of a deformable sheet manipulated in 3-D
workspace under energy constraints. The manipulation can
be abstractly modeled as an energy field. An illustration
is given in Figure 3.

Fig. 3. An example of a deformable robot (curved surface) that has
to pass through a hole in a polyhedral obstacle.

The robot we consider in this section will be a deformable
curve operating in a k-dimensional compact workspace. It
will be controlled by an external force field.

For the sake of simplicity, suppose the configuration
space is the set of all C? curves embedded into a k-manifold
workspace W C [0, 1]* which satisfy some constraints on
total deformation energy and local strain energy. The
state space X consists of embeddings of the curve into the
workspace, W, together with a C! velocity field on the
curve. The robot can be controlled by applying C° force
fields to the curve. Previous work on this problem took a
fixed parametrization and this is an approximation which
might not be able to express some of the paths in X. In
this section, we will show that Algorithm 1 can be applied
over all parametrizations.

We can subdivide the curve recursively (say in two
pieces). This will form a partial order £ of subdivision
topologies. For each A € L, we have a state space X
which is an m-manifold for some m which represents the
curve’s constrained deformation, embedding and velocity
field in terms of a finite parameter set (where the curve is
obtained by interpolation). To each A € L, we assign a
probability py > 0 such that >, _, px = 1. Also, an oper-
ator V on every pair A, X' € £ can be defined so that AV X
is the simplest common subdivision topology.

For two states z,y € X, suppose there is a path between
them. We will now sketch an approximation scheme for
the path, discuss what kind of properties the local planner
must have and show how we can compute the path with
PRM. More specifically, we construct X' with an associated
measure and local planner R such that PRM succeeds and
implies paths in X. We note that X is not finitely para-
metric and that X' is not a manifold.

We rely on several reasonable assumptions. The subdi-
vision scheme we are using must be of the type where the
curve represented by some subdivision topology and pa-
rameters must be the limit of the subdivision process. The
family of curves and primitive paths must also be suffi-
ciently rich to approximate any given curve arbitrarily well
when taken under finite composition, i.e., R is path reach-
ability. Finally, we assume that queries are made with
representable pairs (z,y).

Let Ry be the local planner which connects points in X .
We must first show that X, with its probability measure
px and with local planner Ry satisfy the conditions for
Theorem IV.2. Recall that X, is an m-manifold. For any
21, 22,23 € X such that z1 RyzoR) 23, we define Y as the
set of points 2z} € Y where 21 Ryz4 Ry 23. It is now sufficient
to show that Y is also an m-manifold. If we can conclude
that px(Y) > 0, then it follows that p > 0 (in the sense of
Theorem IV.2) for any path with a finite number of points.
We will assume for the moment that this assertion holds.

We construct the state space X' = [J, o Xx with proba-
bility measure taken by the product o-algebra and measure
constructions. Measures are weighted for each A by p,.
The local planner for points z,z' (with subdivision A and
A’ respectively) works by reinterpreting z and 2’ as points
in X vx and using its corresponding local planner. This
constructs a probability space by the product construction.
Furthermore, it follows that PRM is probabilistically com-
plete on X' with local planner R.

Suppose v : [0,1] = X is the path between z and y and
this path has € clearance. Since the subdivisions can gener-
ate arbitrarily good approximations to points in X, there
exist points z1,...,2, € X' such that zRz1R--- Rz, Ry
and the new path is within € of .

This observation holds under the assumption that the set
of valid center points for a length two path in R with fixed
endpoints has positive measure. This is a reasonable fact
that might be proved using the open set technique from the
section on 2k-dof robots. This assumption will hold under
a variety of reasonable conditions. We do not give a proof
to avoid introducing unwieldly formalism.



We have shown that, under reasonable assumptions,
given a path for our deformable robot we can construct
a path which is within € > 0 that can be found using PRM
without fixing a parametrization a priori. This shows that
a generic path planner could be constructed for this prob-
lem and that the probability of failure the planner would go
to 0 exponentially in the number of guesses. Since the ap-
proximation space we constructed is not a manifold, we also
note that we succeeded in showing path planning results in
non-manifold spaces without sacrificing the aspects of PRM
that make it desirable to implement in practice. Finding a
path in the approximation space implies a path in X. This
kind of analysis was not possible with previous frameworks.

VIII. DiscussioN AND FUTURE WORK

In this paper, we reformulated the robot path planning
problem in terms of probability spaces, measures and com-
putation of the transitive closure of a given local relation.
We showed that if it was possible to guess a path between
two given points at random, then n sets of strictly positive
measure existed so that guessing at least one point in each
set would produce some path between these points. This
allowed us to bound the probability of failure in terms of n
and p, where p is the measure of the smallest bucket. We
also used Lemma IV.1 to find a bound for the expected
number of points we need to guess in order to find some
path between the query points, if that path exists. Since
the assumptions we used for our proofs were quite weak,
our treatment has bearing on using PRM for planning prob-
lems in practice.

It is interesting to note that when there are buckets with
variable sizes, Coupon Collecting is limited by the smallest
bucket. This bears a strong similarity to results on narrow
corridors published in [13]. While this is not a proof that
PRM is limited by small p, it is consistent with previous
claims to this effect. Certainly one can easily construct
examples where a point must be guessed from a very small
bucket and then argue a lower bound inversely proportional
to p, the size of this small bucket.

In our first example, 2k-dof kinodynamic robots, we
echoed the results on kinodynamic planning of [15] and
gave a rigorous proof using a path isolation analysis. In
this example, we used buckets which were possibly discon-
nected and had shapes which were not at all similar to that
of a ball.

The second example presented in Section VI-A motivates
our framework by showing the need to reason explicitly
about the probability measure. This was used to solve the
problem of computing path reachability on finite CW com-
plexes. We were motivated by polygon manipulation with
contact. The defined spaces are not manifolds and we used
an unusual probability measure to guarantee a solution.
This work has direct applications to planning with contact
and for certain kinds of manipulation. Some interesting
and direct extensions of this work can be made by adding
dynamics and planning for collisions or for manipulation
by ‘pushing’.

Our treatment of the second example showed construc-

tions which are useful for reasoning about planning with
contact and for manipulation. The combinatorial structure
of polyhedra in contact is quite complex and constructing
the CW complexes for these contacts explicitly can be quite
difficult particularily when multiple contacts are allowed.
Realizing such construction in practice can still be quite
difficult.

In the final example presented in the paper, we showed
a probabilistically complete path planner for a deformable
curve robot which did not make use of a fixed parametriza-
tion. This is a powerful extension of [3] and further mo-
tivates using probability spaces for the analysis of PRM.
We constructed an approximation space which was eas-
ier to represent and implied paths in the original space.
The construction that we proposed was complete in the
sense that any path occurred in some approximation space.
This technique may have additional applications for certain
problems where incomplete approximation spaces could be
used.

A. Space Coverings

Our approach used a path isolation argument. A space
covering argument for PRM analysis is another approach
that has been used. It would be interesting to try to relate
our analysis to [12] and recast it in terms of space coverings.
We know that for any given pair of path connected points,
the probability of not finding a witness to their connec-
tivity decreases as the number points we guess with PRM
grows. It seems natural that the measure of the missing
part of u?(R) can be made arbitrarily small by guessing
more points. More formally we have the following.

Conjecture VIII.1: Let (X, 1) be a probability space and
let R be a local relation such that the conditions for Theo-
rem IV.2 are satisfied. We define Ry as the relation com-
puted by PRM after N guesses. Prove that for every € > 0,
there exists N such that

E[u*(R) — p*(Ry)] < e

B. Polygon Manipulation

Combining some of the ideas we discussed in the exam-
ples can lead to many challenging problems in path plan-
ning. We end this paper with such a problem and some
conjectures about it. This problem is very interesting for
practical applications in assembly and part manipulation.

Conjecture VIIL.2: Let Py, ..., P, be simple polygons in
the plane and let the workspace be W = [0,1]2. Sup-
pose these polygons have masses myq,...,m, distributed
uniformly. The polygons can contact each other and will
collide using an impulse model (such as [30]). A polygon
cannot leave the workspace. Let F' be a class of force fields.
A force field f can be applied to the workspace and the
polygons will move accordingly. They may or may not
converge to a fixed configuration.

For a given choice of F:

1. For some n > ng, there is a choice of polygons and
target configuration y such that for any f € F, there exists



an initial configuration = such that z with f applied to it
does not converge to y.
2. For some n > ng, there is a choice of polygons, starting
configuration z and target configuration y such that for
any f € F, xz with f applied to it does not converge to y.
3. For any n, choice of polygons, start configuration z and
end configuration y, the existence of a contact-free holo-
nomic path from x to y implies that there is a sequence
of force fields f1,..., fr11 € F and times 1, ..., t such that
applying f; for time ¢; and then ending with fi+1 applied
for ever will bring configuration z to configuration y. Fur-
thermore, a PRM planner can be constructed for this task.
The first two parts argue that a result such as [27] cannot
be obtained for this system and the third claims that PRM
could be used for this problem.
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IX. APPENDIX
A. Proofs of Measurability

The following provides proofs of Propositions I11.1, T11.2,
and II1.3 as well for Lemma II1.4.
Proposition 1 (111.1) fp(z1, ..., z,) is a measurable func-
tion.
Proof: We begin by taking a decomposition of R into
rectangles,

R = U Al X Bl
i=1
We define Cj; = A; N B; and consider the set

00 00
n
S" = U U Ai1 X Ci1i2 X - X Cin*Qinfl X Binfl'
i1=1 in_1=1

We claim that S = f1(1). S™ C f,;(1) is obvious by the
construction of S™. Suppose f(z1,...,z,) = 1, then we have
i1y ey in—1 such that (2;,,2;,,,) € A;; x B;,. This implies
wi;,, € Ciy i1 which demonstrates that f, (1) C S™. By
definition S™ is a measurable subset of X™ and we conclude
that f, is measurable. |
Proposition 2 (111.2) f*¥ is measurable for every x,y €
X.
Proof: Let z,y € X be arbitrary and let n > 0 be
given. Recall the definition of S™*2 and take a decompo-
sition as before into rectangles A} x --- x A? . We claim

that
') = U Af %
ii(z,y)€A} ><Ai+2

(f2¥9)~ ox Al

n+1-

The claim is obviously true since f,(x,z1,...,Zn,y) =
fgy(mlv 7mn) u
We will now show the transitive closure is measurable,
which is Proposition III.3.
Proposition 3 (II1.3) R € ¥2.
Proof: Recall again the definition of S™.
decomposition into disjoint rectangles for S™,

We have a

St =J@M x - x (A7)
i=1
We now claim that
U U ATy X (AP

This can be seen by observing that the definition

R = {(xvy) : EI"171;1’ "'axnafn-‘rQ('Ta'Tla "'axnay) = 1}
implies that (z,y) € R if and only if there is n, i such that
(x,y) € AT x AT, ]

We now show that R is measurable, which is Lemma
111.4. R
Lemma 1 (IIL4) R is measurable subset of X?2.
Proof:  Following the proof in Proposition I11.3, we
begin by studying a decomposition of S™ into rectangles

(A?)] Let

N n—1

S:i= (AN x (AN n > 2,02 [ T] (AP, | >0,
j=2

and then claiming that J S = R. The left hand inclusion
of S C R is easily seen. To show the reverse inclusion,
suppose Algorithm 2 succeeds with probability greater than
0 on some query (z,y) but (z,y) € JS. We observe that
for some n > 0, there is probability greater than 0 that
on iteration n, the algorithm reaches that iteration and
succeeds. The case n = 0 is trivial so we do not consider
it. We call this probability p and observe that it is equal to
the probability of choosing z1, ..., z, at random from X"
such that fY(x1,...,z,) = 1. Observe that

(7))

By the definition of f?¥ used in Proposition 111.2 and since
the inequality

0<p=u"((f;")1(1) <

n—1
> pr | T, |
(e, y) E(ATT?) 1 < (AT ) g2 j=2
implies there exists 4 such that
n+1
| TLAr+; | > o.
=2

It follows that (A"*2); x (A"?),45 € S and (z,y) € US
which contradicts the initial assumption. We conclude that
R= 8 a measurable set by construction. |



B. CW Complex Proof

In this subsection, we give a proof for Theorem VI.1.

Theorem 1 (VL.1) Let X be a finite CW complex with
decomposition Xg C --- C X,,. Suppose we are given a
measure g and a local planner R such that for every cell
B7
1. if A C B is open and non-empty in B, then p(A) > 0,
2. if xRy with y € Int(B), there there exists A C Int(B)
such that A is non-empty and open in B and ¢y’ € A implies
TRy,

3. R is symmetric and R contains path reachability for B.
It follows that a PRM planner using p and R is probabilis-
tically complete for computing path reachability in X.

Proof:  This proof requires that we show that the
conditions of Theorem IV.2 are met. For each individual
cell, it is very easy to check that the conditions for Theorem
IV.2 hold using the measure and planner restricted to that
cell. We will explain why it also holds for the compound
space.

Let z,y € X be any two path connected points and let +y :
[0,1] — X be the path that connects them. Suppose there
exists 7 such that y~1(B;) is disconnected. This implies
there is a < b € [0,1] that lie in different components of
v~Y(B;). Since v(a) and y(b) are path connected in B;,
there exists a path from x to y, v/, such that for 0 < ¢ <a
and b < ¢ < 1, v'(¢) = v(¢) and for a < ¢ < b, 7' stays
in B;. Therefore without loss of generality, the preimage
v~ 1(B;) is connected for all i.

Using the preimages, v~1(B;), we obtain a partition of
the interval [0, 1] into blocks:

[ao,al], sy [ai,aﬂ_l], ceey [aM_l,aM]

where ag = 0, ayy = 1. For each point ¢ € [a;,ai41] in
a block, there is a cell B; such that v(c) € B;. For each
0 <4 < j < M, observe that B; # B;. For each i, vy(a;)
and 7y(a;y1) are both in some B;. Since each B; is path
connected, there is a sequence of points in Bj, by, ..., bg such
that v(a;) Rb1 R...Rby Ry(a;+1). So over each block there is
a local planner path through the corresponding ball. We
can now paste these paths together. We conclude that
there exists x1, ..., z,, € X such that xRz R...Rx, Ry.

Having a shown that a path using R exists between z and
y exists if they are path connected, we must show that the
path satisfies the conditions for Theorem IV.2. To do this,
it is sufficient to prove that for any three points z,, xp, z. €
X where z,Rxz Rx. that there exists a measurable subset
A of X such that for all z € A, z,RzRz, and u(A) > 0.

Observe that there is a unique B such that x; € Int(B).
By assumption, there is A; an open subset in B such that
z € Ay implies x, Rz. Similarily, there is A5 an open subset
in B such that z € A, implies zRz.. Now A = A1 N A,
and z; € A implies p(A) > 0 since A is open in B.

|

C. Polygon Robot with Contact

In this subsection, we provide proofs for the lemmas and
the theorem of Subsection VI-C. We begin by proving
Lemma VI.3 which follows from the given definitions.

Lemma 2 (V1.3) The Z, are pairwise disjoint and their
union is X.

Proof: Suppose there was «a, 5 such that a # § and
ZoNZg # 0. Let v = aUB and observe Z,NZg C X,. Now
a < v since a # § and therefore x € Z, N Zg implies that
v(x). This contradicts the definition of Z, and therefore
no such z exists.

Let € X be arbitrary. Suppose a(z) and notice that
x & Z, implies that there is § with a < 8 such that 8(z).
We proceed recursively by noting that §(z) and that this
sequence eventually terminates as the set of all constraints
is the largest set in the partial order. Therefore, the union
of Z, is X as every point of z appears in some unique Z,,.
|
To proceed with the next proof, we need to define
parametrizations for the equivalence classes of the contact
constraints. Throughout, this section we will assume cer-
tain geometric degeneracies do not occur. Precisely, no
s;,8; parallel and no p;,p;,py collinear. The same is as-
sumed for obstacle vertices and edges. The proofs we pro-
vide can be amended if the general position assumption is
removed, however it greatly complicates the presentation
and is beyond the scope of this paper. We note that the
Algorithms 3 and 4 are still correct without the general po-
sition assumption although it requires additional checking.
To each o € P, we can assign a subspace of X which we
call X,. X, is the subspace in which the constraint pairs
in X are realized. More formally,

Xo={zeX a2}

For example, if a = {(v;, s;)}, then X, is the subspace
of X consisting of configurations where obstacle vertex v;
intersects with some point of s;.

The collection P forms a partial order ordered by the
relation <. This induces a partial order over the subspaces.
In particular, if @ C @ then Xj is a subspace of X,. Also,
note that X = Xj.

The general scheme will be that for every «, there will
be an integer 0 < k, < 3, a kg-manifold with boundary
A, and an injective, continuous map

T Ao > T.

We will further prove that 7= (X) is homeomorphic to X,
Once the parametrizations are in hand, we will be ready to
prove Lemma VI.4.

Let « be some constraint set. We will now enumerate
various cases for «:
0
Api e}
. {(pi,ej), (pi, ex)} where e; Neg = .

- {(pir€j), (pr, 1)} where i # j.

Alsi,07), (e}

We note that the above list is not exhaustive. Each of
the non-empty cases has a dual obtained by treating the
polygon P as fixed and allowing the obstacles O to move.
For example, a constraint set of type {(s;,v;)} is dual to
a constraint set of type {(p;,e;)}. We now examine each

1
2
3
4
)



constraint set above separately and define in each case A,
and 7,. In order to do that we need to define two geometric
maps. Let ¢ : PxS1xR? — T be the transformation given
by the rule ¥ (p, 8, x) rotates P by 8 about point p € P and
then translates by z to obtain an embedding in T'. If s is
any line segment then s : [0, 1] — R? is the parametrization
for the segment.

We continue now by describing the parametrizations.
The cases can be easily verified by geometric arguments.

Case 1: Suppose a = ) then set A, = T and say that
7o be the identity map on T. 7, (X) is homeomorphic to
X, =X.

Case 2: Suppose o = {(p;,e;)}. We set 4, =[0,1] x S*
and use

7Ta(C, 9) = 1#(1% 9, €j (C) - pi)‘

To is an injection and 7, !(X) is homeomorphic to X,.
Case 3: Suppose o = {(p;, €;), (pi,er)} and so that e; N
€1 = U We set A, = S and use

Wa(a) = d)(pivavvm - pz)

T is an injection and 7, 1(X) is homeomorphic to X,.
Cuse 4: Suppose & = {(pi,€;), (pr,er)} where i # k. We
set
An ={(0,¢) : (pi, 0,e;(c) — pi)(pr) € e},

and use the map

ma(f,¢) = Y(pi, 0,e;(c) — pi).

7o is an injection and 7;'(X) is homeomorphic to X,.
Also for every § € S* there is at most one ¢ € [0,1] such
that (6,¢) € A,.

Case 5: Suppose a = {(s;,v;), (pr,e1)}. We set

Ao ={(0,0) : ¥(5i(0),0,v; = s:(c))(pr) € er},

and
Ta(f, ¢) = ¥(5:(0),0,v; — si(c)).

7o is an injection and 7 '(X) is homeomorphic to X,.
Also for every § € S* there is at most one ¢ € [0, 1] such
that (6,¢) € A,.

Finally, we argue that any other constraint type is either
unsatisfiable or consists of 0, 1 or 2 points. This argument
makes heavy use of the general position assumption. There
are additional exceptions if this condition is removed.

Proposition IX.1: Let a be any constraint that does not
appear in the list or as a dual of a type in the list. Then
X, consists of either 0, 1 or 2 points and hence A, 7, are
trivial.

Proof: It {(pi,e;), (pi,ex)} C a where ej Nep = 0
then X, = @ since a point cannot lie on two disjoint lines.
Otherwise |a| > 3. Suppose || = 3. By taking each of
the three constraint types with two elements and adding a
(ps, e;) constraint, we can obtain all types with 3 elements
up to duality. Consider the set

C= {Wa(a)(pi) ta € Aa}'

Observe that C' is a curve and that it lies on the bound-
ary of its convex hull. Additionally, it is important to note
that the general position assumption insures that C is not
a straight line and is smooth. Thus, any line segment inter-
sects it at most twice. In particular, e; intersects it at most
twice, demonstrating that X, consists of 0, 1 or 2 points.
Now if |a| > 3, we know that that there § < o with |3] = 3
and X, C Xg finishes the result. It is important to note
that X, may not be empty when |a| > 3 even with the
general position agsumption. |

We turn now to the spaces Z, and show that they are
open manifolds.

Lemma 8 (VI4) For every a, either Z, = () or there is
an integer 0 < k, < 3 such that Z, is a k,-manifold.

Proof:  For some «, suppose Z, is not empty. We
claim then that for Case 1 that k, = 3, for Case 2 that
ko = 2, for Case 3, Case 4 and Case 5 that k, = 1 and for
any other situation that k, = 0. This argument is based
on counting the number of free variables in A,. We point
out that this reasoning is sound since a degenerate A, can
only arise when Z, is empty.

Let z € Z, and observe that by definition on the con-
straints in a are satisfied at configuration z. It follows
that there exists e > 0 such that for every y € B.(z) such
that a(y), there is no 8 with @ < § and S(y). Also, observe
that C = 7 (B.(x)) is open in A,. Finally, 7,(C) C X by
construction of the neighbourhood around x. We conclude
that every point z € Z, has neighbourhood C, which is
open in A,. Fach neighourhood has dimension k, proving
that Z, is a k,-manifold. [ |

We are finally ready to prove the main theorem for this
section.

Theorem 2 (V1.2) X is a finite CW complex. There is
an explicit measure and local planner for X that satisfy the
conditions of Theorem VI.1.

Proof: A technicality which complicates this proof is
that Z, which k, > 2 might have holes. For the moment,
we will assume this cannot happen however by relaxing the
definition of CW complex to allow the cells to be manifolds
with boundary rather than closed balls we can obtain a
slight variation of Theorem VI.1 which has essentially the
same proof. The argument, for X being a CW complex also
holds under the assumption that there are no holes.

We submit that Z, are the cells and that

Xy = U Zo.

ake <d

The X, are the skeletons for the CW complex structure.
Lemma VI.4 proves that Z, are closed k,-manifolds for
0 < ko < 3 or are empty. The cell structure is correct for
d =0 and for d > 0, let a be such that k, = d+ 1. In each
case, we observe Bd(Z,) C X4 and then take f to be the
identity on X restricted to Bd(Z,). This is continuous by
definition. Because the cells are pairwise disjoint, it follows
that this is a correct inductive definition of a CW structure.
This follows from Lemma VI.3 as does the fact that X5 =
X when together with the observation in Proposition IX.1.



Since there are only finitely many Z,, we can conclude
that it is a finite CW complex.

Now for any a with Z, non-empty, let A C Z, be open
and non-empty in Z,. Let p be the probability of choosing
« at random in Algorithm 3 and observe that p > 0. Let pq
be the uniform measure for 4, and observe that Algorithm
3 uses this measure to induce a measure for sampling a
point from X satisfying a conditional on a being selected.
It follows that measure p induced by Algorithm 3 satisfies

1(A) > ppa(4) >0,

as desired.

Suppose for x, y that xRy. Now let a be maximal such
that a(z) and a(y). Without loss of generality, we can
infer that * € Z, and y € Z,. By appealing to results
such as those presented in [5] for manifolds with or without
boundary, we observe that there is 4, open in Z, such that
z € A implies zRz and A is neighbourhood of y. Now let
B be such that y € Zg. This is unique because of Lemma
VI.3. A" = AN Zg is open in Zg and non-empty because
ye A

Finally, we note that R is clearly symmetric and that
R contains path reachability for every Z,. The final point
can be argued by the path isolation argument for manifolds
presented in [5] and in other works. ]

The theorem still holds without the general position as-
sumption, however it requires taking more cases for the
parametrizations because of geometric degeneracies that
can occur. The proof is beyond the scope of this paper.



