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Abstract— Motion planning research has been successful in with an appropriate controller. In some applications, heave
developing planning algorithms which are effective for saling  this leads to poor results since the converted motions tend t
problems with complicated geometric and kinematic constrants. be of very low quality. In non-holonomic planning, motivdte
Various applications in robotics and in other fields demand L . o
additional physical realism. Some progress has been maderfo by applications for_ car-like robo_ts, tractor-t_raller rd)_iao_and
non-holonomic systems. However systems with significant dr, SPacecraft, converting unconstrained paths into motidmistw
underactuation and discrete system changes remain challging satisfy dynamic constraints can introduce large numbers of
for existing planning techniques particularly as the dimersional-  prief and jerky motions [18]. In some cases, the resulting
ity of the state space increases. In this paper, we demonstma trajectories are impossible to follow on a physical platior

motion planning technique for the solution of problems withthese . . .
challenging characteristics. Our approach uses samplingased [19]. Path planners which were restricted to generating mo-

motion planning and subdivision methods. The problem that ve  tions satisfying the non-holonomic constraints were desig
solve is a game that was chosen to exemplify characteristicsin order to address these difficulties. Non-holonomic vasa

of dynamical systems that are difficult for planning. To our of PRMhave been formulated [20] and results for such systems
knowledge, this is first application of algprithmic motion planning have been achieved with the Rapidly Exploring Random Trees
to & problem of this type and complexity. (RRT) family of planners [21] as well as the Expansive
Spaces planneEST) [22]. Non-holonomic motion planning
applications in the sampling-based planning literaturgeha
Motion planning algorithms are employed as a tool foseen tested for car-like robots, tractor-trailer robotd ather
reasoning about physical systems in diverse applications: similar 2-D platforms [20], [21], [22]. In the context 03-D
ject manipulation [1], assembly [2], prototyping of mecltah examples, several different variations of free flying spsaat
systems [3], autonomous robots [4], inspection and observa have been examined [21].
[5], humanoid robots [6], animation [7], virtual environnie In the sampling-based planning literature, there have been
[8] and structural computational biology [9], [10]. a few studies on generating paths for robots with second-
Early algorithmic motion planning research focused oorder non-linear dynamics. The specific problem instances
constructing collision-free paths in the presence of gadme that appeared were the lane-change problem for a second-
constraints (workspace obstacles) and kinematic consdraiorder car-like robot, the control of a spacecraft with omni-
(restrictions on the robot’s motion). The earliest proldendirectional thrusters in a cage, second-order differéudtiae
considered were polygonal robots in polygonal workspacasbots moving in a maze, and a second-order blimp-like robot
(Sofa Mover’s Problem) and polyhedral robots in polyhedrahoving around pillars [21], [23], [24].
workspaces (Piano Mover’s Problem) [11]. Another impartan This paper addresses the implementation of a planning
domain is path planning foR-D and 3-D linkages [12]. method and its application to a motion planning benchmark
Sampling-based planning algorithms such as the Probiabilisvith severe underactuation, significant drift, high dimenal-
Roadmap MethodRRM emerged as a powerful and effectivety, discrete system changes that occur at boundary conditi
approach for solving these kinds of planning problems [13nd finally a system which is not reduceable to a system
[14]. Applications using these techniques have been adapteith lower order dynamics. This work has two concrete
to a large variety of systems: freely movirlgD and 3- goals in the context of planning applications that demand a
D robots [13], serial and parallel linkages [13], [15], dfije high degree of physical realism: the development of online
manipulation [16], humanoid robots [6], flexible object¥]1 motion planners that can provide stability and completenes
and proteins [9], [10]. guarantees and the development of offine motion planners
In early planning research, the task of executing a computitht can be used interactively in prototyping as tools for
path on a robot was viewed as a secondary problem. The pgghsibility and safety testing in complex environments. We
could be smoothed and scaled to satisfy dynamic constraisée applications such as dynamic obstacle manipulatiat, pa
of the system and the resulting trajectory could be followadanipulation with force fields, pursuit-evasion problemsl a

I. INTRODUCTION
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Fig. 1. Execution snapshots for a solution to the game of é&owlith6 Koules
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A. Problem Characteristics Query HECNNER

This paper details the generation of trajectories for a dy- Z
namical system which was chosen to have features which are %
challenging for motion planning techniques: namely drift; ©
deractuation, discrete system changes and high dimetisjona S S AREE OF
Drift in a dynamical system occurs when the system cannot in- R A WA
stantaneously stop. For example, second-order dynanyisal s
tems with bounded acceleration cannot instantaneousisetan Fig. 2. Motion Planning Architecture

a non-zero velocity. From a planning perspective, systeitts w

drift are challenging since the shortest path cost between t

states frequently disagrees with the metric. Underadnatiworkspace without touching the boundary itself. In Figure 1

occurs when the dimension of the control space is less thaa show some snapshots of a solution of the game of Koules

the dimension of the state space. Underactuation can ocuaith 6 Koules. The game of Koules is described in detail in

as a result of non-holonomic constraints or other dynam@&ection IlI.

constraints. An underactuated system has instantanepasly i )

sive or coupled degrees-of-freedom. Analyzing the shape dn- Planning Technique

dimensionality of the reachable space in the presence @rund The planning technique we employ to solve instances of the

actuation and kinematic constraints can be quite chaltengi game of Koules is illustrated in Figure 2. The motion plamnin

Discrete system changes occur in hybrid dynamical systealgorithm we employ is the Path-Directed Subdivision Tree

and manifest as discontinuities in the dynamic constrants exploration algorithm BPDST- EXPLORE) [24]. This paper

in the state variables as the system evolves. The behaviorcofitinues our work on th&DST- EXPLORE algorithm and

hybrid systems can be quite complex and difficult to analyzapplies it to the game of Koules, which required additional

Finally, high-dimensional motion planning is well known tcand non-trivial adaptation. In fact, although it is not viith

be hard. This is particularily true for dynamical systemmsi the scope of this paper, obtaining an efficient and general

state parameters typically interact in a complicated way. implementation oPDST- EXPLORE was also interesting from
The dynamical system that this paper deals with is basadrogramming perspective.

loosely on a Unix game called the game of Koules [25]. The design of the planner used in this paper is shown in Fig-

The game of Koules is a multi-agent second-order dynamicak 2. The general component is tABBST- EXPLORE block.

system where inter-agent collisions are resolved by elasiihe other blocks and data types need to be written specjficall

collision. The agents are discs which operate in the urdr each planning application. Thetmulatorblock represents

square. Elastic collisions cause discrete system changesthie ground truth for the underlying system. As input, it &ake

instaneously causing velocity discontinuities. One aderd states and raw controls and outputs a state one time step in

robot (ship) that has four different controls and the otly=ras  the future. The simulator for the game of Koules is described

(Koules) move according to a force-field function deterrdinein Section 1. Thecontroller block wraps the simulator by

by the current state of the system. The ship wins the garsieucturing the controls sent to the simulator. This cdhgro

by pushing or bouncing the Koules in the boundary of the a motion generation model which creates trajectories tha



have a nicer structure than a sequence of random contrdisstateq = (s, 0, vs, 1, v1, ..., Zn, v, ) determines the posi-
The controller that we use is described in Subsection IlI-Bon, x,, headingg, and velocityv, of the ship together with
Thetree of random walkslata structure stores a collection othe positionsg;, ..., x,, and velocities, ..., v,, of the Koules.
path segments related by path branches. Representingtpaths There are four distinct control inputs in the set of controls
be compact and support fast interpolation is critical foodjo for the game of KouleslJ = {ug, ur, ugr,u1}, which corre-
planner performance. The representation we use is sumgdarigpond to cruiseyq, turn left, uy, turn right,ug, and thrust,
at the end of Subsection II-C. The search performed by the.
motion planner is guided bygoverage estimatewhich we An instance of the game of Koules consistsipthe number
compute using @pace partitiondata structure. Path segmentsf Koules and an initial statg, € @,,. A partial solution to
are subdivided and assigned to cells in the subdivisione€Govthat instance is a pathof durationT” such that at state(7"), a
age estimates are computed by computing cell volume, gendfibule touches the boundary and no boundary collisions occur
and membership. The subdivision scheme we use is describadthe path before tim&'. A full solution is a sequence of
in Subsection IlI-C. pathsm,,, ..., 71 with durationsT,, ..., 71 such that for ali <

n, m; is a partial solution to the instance m; 1 (T;+1))-

C. Organization :
B. The Dynamic System

Our version of the game of Koules is described in detail . .
. . ; . : -~ The game of Koules is a second-order dynamic system. The
in Section Il. Also in Section Il, we describe the design__.. L . )
) . ) : -2 motion of the ship is determined by its state and the control
and implementation of the simulator. Section Il summagize

the PDST- EXPLORE planner, and the implementation Ofmput using the following equations:

the local trajectory generator and the coverage estimation T Vs
scheme. We also describe a high-level framework which uses 6 | = ve (1)
PDST- EXPLORE as a subroutine to generate full solutions Vg R(9) - [a 0]T

to game of Koules. Our experimental results are described in ) ] _ ) _
Section IV. In Section V, we discuss the experimental resufhere vy is the turning speedR(f) is the rotation matrix

and areas of future research. in SO(2) determined by? anda is the thrust. The turning
speed,vg, and thrust,a are determined as functions of the
Il. PROBLEM DESCRIPTION current control input € U,
Our version of the game of Koules takes place in a 2- u_ | ve(w) | a(u)
D workspace, specifically a square. There are two types of Uo 0 0
robots inside the workspace: a single ship and the Koules. ur || g 0
The ship is controlled by the user and the Koules follow ug || —vg>| 0O
independent trajectories. When a robot touches the boyndar U1 0 ™

of the workspace, it is killed. The user loses the game if the The motion of each Koule is determined by its state and

ship is killed and the user wins the game if all of the Kouless athe position of the ship using the following damped spring
killed. When two robots touch, an elastic collision occunsla equation:

the robots bounce away from each other. The ship is capable of
four different actions that the user can control: to cruiseyrn Ti | _ v )
left or right at a constant speed, or to apply a constant thrus 0 (0—xi) - Ae —vi - h

in the direction of the ship’s current heading. The Kqulees Alvhereo is the center of the workspac, is spring constant

attracted towards the center by a damped spring which makgs, c(ing towards the center ands a friction parameter.

jthem difficult to push towar_d; the .sides. The user can only|, he simulator, control inputs are applied over a fixed

influence the Koules by colliding with them. timestepA¢ and numerically integrated with a fourth-order

Solving an instance of the game of Koules requires “?@Jnge-Kutta-Nystrom method [26].

generation of sequence of timed controls such that the ship

survives and all of the Koules are killed. In the remainder . Rules for Elastic Collisions

this section, we describe the implementation of our versionDuring each time-step of the simulator must simulate the

of the game of Koules. In the next section, we describe tegstem to generate the state that results from applying the

planner that we use to solve input instances of the game. current control,u € U, to the initial state. This is a two-
step process: first, a numerical integration of the equatain

A. State Space and Controls motion and followed by a discrete event simulation to resolv

We begin by describing the state and control spaces. TRY collisions.

state space for the game of Koules witloules is determined _ At the beginning of the time-step, the system is in sttte
as follows: The result of integrating the contral for time At is a new

state,¢f. However, althougly® is collision-free, it is possible
Qn = ([0,1]% x S* x R?) x ([0, 1]* x R*)". that collisions between robots or between the robots and the



boundary of the workspace occur along the path betwfenstate of a partial solution generated by one execution of
andg’. In order to calculate collisions and the results of thEDST- EXPLORE. To handle this possibility, we apply a task
induced velocity changes, a locally linear approximatien planner, which is described in Subsection IlI-D.

used and first-order motions are simulated with a discrezatev

simulator. To begin with, a new initial state, A. ThePDST- EXPLORE Algorithm

gt = (@5, 0%, of 2l of Lt o), The intuition behind thePDST- EXPLORE algorithm is
quite simple: the space of random walks is searched to
optimize coverage of the state spadeDST- EXPLORE is
presented in Algorithm 1. Beginning from an initial state,
Y € @, atree of reachable states is constructed incrementally.

long the lin termin their velociti ring t . . . .
aong the fines 'de em ed by their veloc es (.ju 9 he parameteNje, is the maximum number of iterations that
discrete event simulation. If there are no collisions, raft%DST_ EXPLORE will run for

time At has elapsed, the system will reach a state with the . .
P y A sample forPDST- EXPLORE is taken to be a collision-

same positions as statg and with the velocities of state teasibl th in the stat . th which i
1" The velsies are consiantdlong th me step and 8% S5 P 1 e Fpece e, bl wich -
approximately correct with error linearly proportion £, ) ; N

PP y Y Prop sgmples generated during a run PDST- EXPLORE is re-

The events in the discrete event simulation occur when d 10 asP. Th . f th les f h ith
pair of robots collide or when a robot touches the bounda{frre 0 asi”. the union of the samples form a tree w

The ship has radius, and massn.. Each Koule has radius S the root and pairwise intersections at the branch stiates.
. and massny ? = this way everyr € P is associated with a patipat h(r),

e A . . W
Pairwise collisions occur when the distance between tvpggmmng aly a_nd_ W't_hﬂ _as its suffix (lines).
robots is equal to the sum of their radii. This is predicted by C0verage optimization is effected PDST- EXPLORE by

the solution of the appropriate quadratic equation. It isthe Mmaintaining an incrementally refined subdivision @f The
use iterative root polishing to avoid simulation errors geei SUPdivision,S is a set of cells (subsets @f) which partitions
by near singular states. Collisions with the boundary afé A probability Measurey, 1S US?O_' to quam_'fY the volume
determined by solving linear equations. Inter-robot eahs of each cell. When a cell is subdivided it split into two cells

are resolved by applying theD elastic collision formula and Th€ SetS is updated by removing the subdivided cell and
boundary collisions end the simulation. adding the new cells. The subdivision scheme and measure are

The minimum amount of information required to store 5eferred to as the coverage estimation scheme. This compone
path is the initial state” and a sequence of timed controPf the planner is designed for the application and the ond use
INPULS: 0 = t0, w1, t1, st 1 U, L Where the inputu; is in this paper is described in Subsection IlI-C. The subiivis

10 = to, UL, t1, ey b1, Uiy b ¥

applied from timet;_, to time #; andu; # u.1. In order to OPeration occurs on lingé2 of Algorithm 1. .
reconstruct the state, at time¢ the integrator and discrete At the end of each iteration dPDST- EXPLORE on line
event simulator must be run. Our implementation stores kéy: an invariant refating” and S is enforced. Everyr € P
frames at times were collisions occurred and with a certdijust have the property that is contained in a unique cell
minimum density to reduce the amount of integration th&f - This is implemented by subdividing paths into a set of
needs to be done during interpolation while maintaining $£9ments if they cross multiple cells.

is constructed frong® andq’ as follows:z = 29, 6+ = ¢°,
v =20, v} = (2f — 29)/At andv) = (xzf —zf)/At.
All robots are then assumed to begingt and to move

Compact representation for path data. A new Sample is created from an EXiSting Sample by invok-
ing the random propagation primitivéROPAGATE. When
Il. PLANNER DESIGN a sample is propagated from a pathe P, the result of

As described in Subsection I-B, the planner architectuRROPAGATE(~) is a new path which branches from The
contains several components: tRBST- EXPLORE planner, PROPAGATE operation is used on lin€. Iterated calls to
the controller, the simulator, the tree of random walks drel t PROPAGATE determine a random walk arRDST- EXPLORE
space partition. In this section, we describe each parttailde can be thought of as constructing a tree of random walks. The
ThePDST- EXPLORE planner, the tree of random walks andmplementation oPROPAGATE is described in Subsection Il1-
the overall control flow in Figure 2 are described Subsectidh
IlI-A. In Subsection 1lI-B, we decribe the controller that At each iteration ofPDST- EXPLORE a sampley € P is
we used generate trajectories for the game of Koules. Téelected on ling and PROPAGATE(~) is invoked to obtain a
simulator was described in the previous section. The spawew sample on lin&. The cell which contained is eventually
partition that we used is described in Subsection 1lI-C. subdivided on linel3. The crux of PDST- EXPLORE is the
A single execution ofPDST- EXPLORE is used to find a selection method which is designed to balance a completenes
feasible path that kills one Koule. Multiple executions bét guarantee with a search that greedily covers the space. Each
planner can be used to construct a sequence of paths Sahpler € P is associated with a scorscor e(w). The
combine to be solution for given initial state, i.e. a fedsibselected sample is the sample with the smallest score and is
path for which the ship Kkills all of the Koules. Howevertherefore deterministic. Each samplec P is assigned a pri-
it is possible that no solution is reachable from the finarity, pri ority(n). The score for that sample is calculated



path with some non-zero probability and a short sequence of
iterated calls should extend into the local space around the

TIME initial segment. These principles were taken into the desig
and testing of the trajectory generation scheme which was
used in the planner described in this paper. We now present
PROPAGATE in Algorithm 2.

C.ONTRO.L Algorithm 2 PROPAGATE(~)
1: Generate uniformly at randome [0, |r|].
Fig. 3. Covering Control-Space 2 Let ¢* := m(t).
3: Let 29 be the ship’s position aj’.
4: Generater € [0, 1]? uniformly and at random.
byscore(r) = pri ori ty(«)/u(C), whereC is the unique  5: Generateys™? € [v™™", 1),
cell containingr. 6: Setv?¥ .= v?ag%
7. for i ranges fronD t0 Npax dO
Algorithm 1 PDST- EXPLORE(q°, Niter) 8: Let v, be the ship velocity of statg’.
1: Let 7% be the0 duration path consisting of the stajé. 9: Letd be tf;(ra ship direction of staig.
2: Set the sample s&? := {7°}. 10 Letw:=0vl®— Vs
3. Set the subdivisiors := {Q} (the trivial subdivision). ~ 11: Let§9 be the direction of vector.
4: Setpriority(zY) :=0. 122 Let A := 69— 9.
5. for i ranges froml to Nie, do 18 if Jo] <4 then u = u.
6. Let~ be the sample such thator e(v) is minimized. 14 else if[Af] < e then u = .
7: Let 7% := PR(PAGATE(’)/) 15: else if A8 > 0 then u = ur,.
8. if 7' is a solutionthen return pat h(x?). 16:  elseu = up.
9: Add the new sample’ to P. 17 end if ,
10:  Setpriority(n’) :=i. 18: !-Gt,q_“rl = SI MULATE(q", u). ‘
11:  Setpriority(y)=2-priority(y)+ 19: if ¢* is a terminal statéhen return the path{q’, ..., ¢'}.
12.  UpdateS by subdividing the cell that contalneﬁ 20: end for
13 UpdateP such that each sample lies in a unique cell2L: return 0.

14: end for

Algorithm 2 incrementally constructs a path by running a

The data structure that stores the current subdivisian ~ controller with the simulator. The operati@ MULATE(q", u)
Algorithm 1 is a binary space partition. The only operation the result of running the simulator described in Section |
performed on it are stabbing queries which run in tim&® compute the state that results from applying contrdor
proportional to the depth of the tree. The selection on lifine At from stateg’. The controller is designed to change the
6 is implemented using a binary heap. The time cost for usig§iP’s velocity into a given target velocity. The targetaaty
the heap is logarithmic in the number of entries. All othdf@s a random magnitude. Its direction is towards a randomly
lookup and referencing operations necessary for impleimgntand uniformly chosen point in the workspace (unit square)
Algorithm 1 are done with hash sets which run in constahfom the ship’s position at initial state of the new path. The
time. initial state is chosen randomly from the states along thb pa

A sufficient condition for probabilistic completeness of #€ing branchedr. The controller runs until the ship or a
motion planner operating on a dynamical system is illusttat koule collides with the boundary or untN,,« iterations have
in Figure 3. Every subtree of positive measure in the contr@fcurred.
input-time tree must eventually be touched by the planrfee. T In lines 4,5 and 6 of Algorithm 2, the target velocity is
priority scheme ofDST- EXPLORE is designed to ensure thiscomputed. Notice the biased sampling that occurs as a mcti

while perm|tt|ng greedy coverage of the state space. of the Ship’S current pOSition. When the Shlp is close to the
_ boundary of the workspace, the target velocity will tend to
B. Design of the Controller move away from the boundary. The target velocity is sampled

Let v be a path segment of duratigh. The operation this way to reduce the probability that the ship will collide
PROPAGATE(y) creates a path segmentbranching fromy.  With the boundary at the beginning of the path.
There are many possible choices for fRROPAGATE oper- Algorithm 2 has several external parameters: the maximum
ation and the performance of tHeDST- EXPLORE planner number of iterationsNmax, the minimum and maximum veloc-
depends on this choice. We have observed that the followiify magnitudes,™" and ™ respectively, and the SWItchmg
design principles are good choices: an iterated sequenceP@pnds for the controlles ande. Choosings = &AL and
calls toPROPAGATE should be able to approximate any giver = ”"T'At guarantees stability.
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C. Coverage Estimation

The subdivision scheme used in our implementation w&®. 5.
relatively unsophisticated. Initial tests determinedt tekab-
dividing the velocity dimensions led to poor performance.
Consequently, the scheme we employed only worked on
the position dimensionst,, 6, z1, ..., z,. The variables were
subdivided in that order and we employed uniform splits. In
an example withn koules, the coverage space ds+ 2n-
dimensional and the state spacebig- 4n-dimensional. The
measureu is uniform probability measure oR? x St x R?".

time in seconds

D. Task Planning Algorithm

The PDST- EXPLORE planner creates partial solutions (re-
call of Subsection II-A). In order to construct a full soluti, a
sequence of partial solutions must be generated. It is lplessi
that the endpoint of a partial solution may leave the system i
a state from which no further solution exists. Thereforefthle
solution planner needs a backtracking mechanism. The metho
presented as Algorithm 3 is very simple but was quite effecti
for the purposes of the game of Koules. The method proceeds

I

PARTIAL SOL’'N 600
PLANNER FOR N KOULES |
]FAIL
PLANNER FOR N-1 KOULES 500 -

,'1"7( 400 |

300
200 | T

100 |

== L L L L L L
0 10000 20000 30000 40000 50000 60000 70000
number of iterations

Average time spent versus number of iterationslf&rand6 Koules

14 T T T T L T
partial solution timing —+—

L L L
1 2 3 4 5 6 7 8
number of koules

g. 6. Average time spent per 1000 iterations versus nurab&oules

recursively: PDST- EXPLORE is invoked to find a solution tne partial solution experiments were run for various nurabe
and if one is found then Algorithm 3 runs on the end state gt koyles. They us®DST- EXPLORE to search for paths that

the solution path. If repeated invocationsRIIST- EXPLORE

eliminate a Koule. The planner is allowed to continue after

fail to find a solution or if the recursive calls fail, then theﬁnding a solution and may generate many solutions. The full
recursion stack pops one level and another attempt is maggtion experiments were also run for various numbers of
The operation of the full solution planner is depicted INF®  koyles and uses Algorithm 3 to construct a sequence of partia

4.

Algorithm 3 SOLVE(n, ¢", Niter, Nattempts

1: for i ranges froml to NagemptsdO

2:  Letn™ := PDST- EXPLORE(q", Niter)-

3 if 7 = ( then continue

4: if n =1 then return 7'

5. Let¢"! be the endpoint ofr™. m. —
6: Letn" ! :=SOLVE(n —1,¢" ", Nier, Nattempty- ;

7. if 771 £ @ then return 7" o "L,

8: end for

9: return (.

IV. EXPERIMENTS

solutions each, in turn, generated wRDST- EXPLORE.

The experiments were conducted on a cluster of 16 dual
AMD 1900MPs with 1 GB of RAM running Debian un-
stable with the 2.4.18 Linux kernel. The code is written in
C/ C++/fluid and uses the~LTK, GLUT, Opend and
S- Lang packages. Throughout the experiments, the following
parameters were used]'® =7, a™* =1, A\c =4, h = 0.05,

0.75, mp = 0.5, rs = 0.03, r, = 0.015 and

At = 0.005. These parameters were set to create a challenging
motion planning task and were tuned by using an interactive
interface to the game. With these parameters, we found that
human players in our research group were not able to solve
examples with more than a few Koules.

A. Partial Solutions

Two different kinds of experiments were run to establish In this set of experiments, we measure the cost per iteration

evidence for our claims: partial solutions and full solago of PDST- EXPLORE during partial solutions. Each run was for
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Fig. 7. Average number of solutions generated versus nuwmfigerations Fig. 8. The trajectory taken the shipiscoordinate during a full solution of
a problem with6 Koules

60000 iterations and worked on a randomly generated problem
instance. The data was merged and averaged from 80 runs, but <
for these results there was very little variations. In Feg@r
we see the total time in seconds versus the iteration caunter
Although runningh iterations of Algorithm 1 is guaranteed to 3000
take at least time proportional f§ log NV, the timing plots are
very close to linear. This is explained by observing thattbs
the runtime is spent in the simulator. The additional coshef
PDST- EXPLORE algorithm is a slight super-linear cost due to
the binary space partition stab operations and the binaap he
make nearly no impact on the scale of a few hundred thousand 0}
iterations. The growth in the cost of iterations is shown in
Figure 3. The super-linear trend is due to the increased sumb
of inter-robot collisions. o - ; : : . - " )
An important question that must be asked about Algorithm number of koules
1 is: how well doesPDST- EXPLORE perform as coverage
estimates become coarser due to the dimensionality irePeas
One way to examine this is to look at the number of solutions a
run of PDST- EXPLORE generates as a function of the number
of iterations. When the space becomes well covered then {

T T
full solution timing ——

3500

2500

2000

time in seconds

1500

500

Fig. 9. Timing results for full solutions averaged o\t trials

rate solutions are aenerated frequently. Before aood ; geproduce occasional path sections where the ship coasted
9 d Y- 9 e away from the Koules, however the usual mode was that the

is achieved, the solution rate will be much less. In Figur%. )
. . > ship would seperate a Koule from the pack and systematically
4, we show the average solution count for partial solutions o . . ) L
: pounce it into the wall using three or four hits, while avoigli
with n = 1,...,6 Koules. The sharp drop-off that occurs Whenh
. . the walls and the other Koules.
moving fromn = 3 to n = 4 suggests the coverage estimator
begins to fail when moving frord to 11-dimensional space. In Figure 6, we present the time used by the planner to solve
) instances of various complexity. The number of backtraoks i
B. Full Solutions Algorithm 3 grew at slightly higher rate than linear with the
Algorithm 3 is used for generating full solutions fornumber of Koules. This is due ®DST- EXPLORE failing to
instances of the game of Koules by repeatedly invokirfind solutions more frequently as increases. The amount of
PDST- EXPLORE. For each trial, we generated a randorntime used grows fairly quickly with the number of Koules.
problem instance and then ran Algorithgn In our tests, This is expected to be worse than quadratic since the number
Nattempts= 1 and Niter = 40000 were used. of invocations of Algorithml grows linearly and the cost per
The computed paths were quite complicated, with duratioiteration is super-linear in the number of Koules. Experitse
of several hundred thousand simulator steps and thousdndsiith up to 20 Koules were conducted and solutions were
manuevers. In Figure 5, we see an example of a compuf@@dduced in less thaf hours. The runtime began to grow
solution for an instance with Koules. The figure shows thevery quickly aroundn = 18 due to memory paging. When
path by the ship's:-coordinate. Qualitatively, the paths tended = 15, the state space &5 dimensional and when = 20,
to look quite good. The random trajectory generation diditerthe state space &5 dimensional.
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