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Abstract

This paper addresses the problem of path planning
for a thin elastic metal plate under fairly general
manipulation constraints. The underlying geometric
model for the plate is provided by a Bézier represen-
tation. The geometric model is augmented by a real-
1stic mechanical model. We assume that the plate is
manipulated in accordance with a set of user-defined
grasping constraints that specify the position and ori-
entation of two opposite edges. Our mechanical model
permits the computation of the shape of the plate with
respect to the grasping constraints by minimizing the
energy function of the deformation of the plate. Paths
are computed by a planner that is based on the prin-
ciple of probabilistic roadmaps. The planner builds a
roadmap in the configuration space. The nodes of the
roadmap are equilibrium configurations of the plate un-
der the grasping constraints, while its edges correspond
to quasi-static equilibrium paths. Paths are found by
searching the roadmap. Several experimental results
tlustrate our approach.

1 Introduction

The Problem The problem of planning a collision-
free path for a rigid robot has been extensively studied
over the last decade [6, 10]. Recent work addressed the
case of planning for a flexible robot/part [7, 9]. The
paper extends previous work on planning for flexible
parts by considering the case of an elastic metal plate
that is manipulated by constraining, through grasp-
ing, the position and orientation of two opposite edges.
The grasping constraints treated in this paper have
not been considered in previous work. The paper illus-
trates many of the issues and difficulties arising when
planning for flexible parts.

Motivation and Related Work Recent work on
the path planning problem has produced several prac-
tical planners for robots that consist of rigid parts

[1, 2, 5, 8]. These methods routinely take into ac-
count geometric constraints such as joint limits and
obstacles, but also constraints arising from kinemat-
ics such as nonholonomic velocity constraints [11], or
constraints over the radius of curvature of a car-like
system [12].

With the exception of the areas of dynamics and
control that have guided the design of modern robots,
there are few cases where physical constraints and
planning have been tightly coupled. The issue of flexi-
bility has been primarily investigated by building and
studying flexible robots. Those robots can perform
tasks such as hammering a peg into a hole. But re-
search in this field deals mainly with the control of
these robots and not motion planning. Examples in-
clude the work in [16] which considers, from a control
point of view, the motion and deformation of a flexi-
ble object grasped by two robot arms, and the work in
[13] where the problem of inserting one end of a wire
into a hole while holding the other end is solved.

Today several applications require the treatment of
flexible parts. Take as an example virtual prototyping
applications where path planners are now used to com-
pute removal paths of parts from assemblies given only
the CAD model for the assemblies [4]. The existence of
such paths ensures that the part can be repaired (or re-
placed if needed) in the final assembled product. Cur-
rent work treats the part as a rigid object. However,
designers often use flexible parts to produce compact
assemblies. For example, in the automotive industry,
several assemblies have parts that are elastic metal
sheets [14]. These are the kind of applications that
are primarily targeted by our work. Other applica-
tions may include computer graphics animation, med-
ical surgery with flexible tools, and computer-assisted
pharmaceutical drug design.

Although planning with deformable parts has not
been addressed in the robotics literature, there is a
large amount of work concerning deformable objects
in mechanics [18] where elasticity is a well under-
stood issue. Additionally, graphics applications use



deformable models [17]. Geometric representations for
deformable parts can be found in geometric modeling
[3]. In subsequent sections, we discuss the models and
representations that we borrow from these domains.

Our Approach A first step in planning for flexible
objects and elastic plates was presented in [7, 9]. In
that work, we have developed a planner that computes
paths for a thin elastic metal plate that can only bend.
In this paper we treat more general manipulation con-
straints: we now also specify the tangents at opposite
sides of the plate. We modify our planner to deal with
the challenge of planning under these constraints.
According to elasticity theory, grasping via two op-
posite edges defines limit conditions for the deforma-
tion of the surface. Any equilibrium deformation min-
imizes an energy function over the set of all deforma-
tions fitting the limit conditions. However, this set is
infinite dimensional and we have to approximate it.
Several representations are available for approximat-
ing continuous functions. We use Bézier curves [3] be-
cause the limit conditions of grasping are easy to trans-
late into constraints on their control points. In our re-
search we have also considered spline models without
significant differences in our results. An exhaustive
and accurate mechanical study of a plate would re-
quire many control points (hundreds) to represent the
stress and strain fields of the deformation. However,
our goal is only to approximate the shape of the sur-
face and for that far less control points are sufficient.
The configuration space of our system is the Carte-
sian product of the space of deformations fitting the
grasping conditions and the space of rigid body trans-
formations. We assume that the velocity is small
enough to neglect the dynamic effects of deformations
and we consider that any motion is composed of equi-
librium deformations.
Our planner, -PRM, is an extension of PRM [8].
It generates a large number of random configurations
and connects them using a local planner. When the
roadmap thus obtained is dense enough, f-PRM tries
to connect the initial and goal configurations to the
same connected component of the readmap and builds
a path by searching for a sequence of edges connect-
ing both configurations. To get through narrow pas-
sages of the configuration space, an enhancement step
is added. f~-PRM incorporates new mechanisms for se-
lecting random configurations and computing paths.
The paper is organized as follows. Section 2 defines
the geometric and mechanical model for the deforma-
tions of the plate. Section 3 describes implementation
issues about f~-PRM. Simulation results are provided
in Section 4 and a short discussion concludes the paper
in Section 5.
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Figure 1: Grasping by two opposite edges

2 Deformation of an Elastic Plate

Before describing the details of our planning ap-
proach, we present the geometric and mechanical
model used for the elastic plate. We expect that the
plate is manipulated by one or two robot arms. In this
paper we do not consider the full version of the ma-
nipulation problem: we only specify conditions, which
we call grasping constraints or limit conditions that
reflect the effect of manipulation on our object. These
constraints account for deformations of the plate as
manipulation by robotic arms would do. In this re-
spect, our work is in similar spirit with work done in
assembly sequencing [19].

2.1 Grasping Constraints

An elastic metal plate can be deformed either by
applying forces on it or by constraining the position
of a subset of its points (position of two edges for in-
stance). These constraints are defined by grasping and
give rise to limit conditions according to which the
global shape of the plate has to be computed.

Let us suppose that we control the deformation of
the plate by constraining the position and orientation
of two opposite edges relatively to one another. Let
(z1,22,23) be an orthonormal coordinate system in
R3. The first edge of the plate is set on the z;-axis
and the plate i1s tangent to the plane z3 = 0 at this
extremity. The second edge, also parallel to the zs-
axis passes by the point (#1,0,%3). @ represents the
constrained direction of the tangent to the plate at
this extremity (see Figure 1). Our parameterization
clearly does not limit the set of constraints that can
be represented.

Under these hypotheses, the shape of the deformed
plate is a cylinder and thus, can be defined by a curve.
The main advantage of the type of grasping considered
in this paper is that it allows a big range of deforma-



tions keeping a simple representation for them.

2.2 Geometric Model of the Plate

Given grasping conditions (1, 23, ), the space of
deformations fitting the corresponding limit condi-
tions is isomorphic to the space of continuous curves
connecting two points, with given tangents at the
extremities. We need to approximate this infinite-
dimensional space by a finite-dimensional one. A good
way to do that is to represent deformations by Bézier
curves [3]. A Bézier curve of order n is defined by
n + 1 control points (Py, ..., Py) according to the fol-
lowing formula:

B(u) = ZB;(U)PZ-,

where u € [0,1] and Bi (u) = < ? ) u (1 —u)?~" are

the Bernstein polynomials. The main advantage of
Bézier curves for our purposes is that the manipulation
constraints can be easily translated into constraints on
the control points. Indeed, B(0) = Py, B(1) = P, and
the tangents to the curve at its extremities are given
by B'(0) = n(P1 — Py) and B'(1) = n(Py — Pa—1),

where B’ is the derivative of B.
2.3 Geometric Analysis of Deformations

In its load free configuration, the plate is a rectan-
gle of length L, width W, thickness h << L, tangent
to the plane #3 = 0 (Figure 1) and the positions of
the control points are: P? = (iL/n,0,0). Tt can be
easily verified that the corresponding Bézier curve is
B°(u) = (Lu,0,0), the tangent vector t°(u) = BY(u)
to this curve is thus constant and equal to (L,0,0).
As explained in Figure 2, the deformation of the plate
at each point can be defined by the extension coeffi-
cient £ and the curvature x of the Bézier curve. The
expressions of these coefficients are the following;:

cw = T(lew)] D) (1)
) x ) .
= P )

where t'(u) = B”(u) is the derivative of t(u) in the
deformed configuration and x is the cross product.
Let us point out that the coefficient € represents the
extension rate of a small piece of matter in the z;
direction (Figure 2). From now on, we let e(u) =
(e(u), x(u)) be the strain vector.

In the general case, the local deformation of a sur-
face is represented by 6 coefficients (3 for plane strain
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Figure 2: Extension and curvature coefficients

and 3 for curvature). For a discussion of that case see
[9]. Our hypothesis of one-dimensional deformation
however, enables us to simplify the representation.

2.4 Mechanical Analysis of Deformations

Under the hypothesis of elasticity of the material,
and given limit conditions, an equilibrium deforma-
tion of the plate locally minimizes a function called
elastic energy. This function is obtained by integrat-
ing the elastic energy per unit of surface ¢(e(x)) over
the plate, where e(x) is the previously defined strain
vector at some point x of the plate. Even if it is thin,
a plate is a three dimensional object. The hypothe-
sis of thinness however, enables us to approximate the
elastic energy of a deformation w.r.t. the shape (ex-
tension and curvature) of the medium surface. We do
not give in this paper the definition of elasticity for
three dimensional objects, nor do we present the com-
putations leading to the elastic energy function that
we will use. These can be found in [18].

The elastic energy per unit of surface w.r.t. the
local deformation is given by:

Ple) = vX(x) + 47 (e), (3)
where
O P (@



Eh &?
¢ = —. 5
pe = 2t 6
The Young modulus £ and the Poisson ratio v are co-
efficients characterizing the elasticity of the material®.

2.5 Equilibrium Deformations

Let us call isometric a deformation with null plane
extension (Vu € [0,1],]|t(u)|| = L). If the plate is
thin with respect to the radius of curvature, that is
hx << 1, equations (3), (4) and (5) state that the cur-
vature energy is far smaller than the plane extension
energy. Thus if for given limit conditions (21, #3, ),
the space of isometric deformations is not empty, any
equilibrium deformation will be close to this space.
On the other hand, the elasticity limit of most metals
is very small (< 1072), and thus any deformation has
to be 1sometric, up to numerical approximations. Ac-
cording to this remark, the constraints related to the

grasping (Z1, Z3,0) become:

B(O): (0,0,0) B(l): (:51,0,5@3)
t(0) = (L,0,0) (1) = (Lcos(f),0, Lsin(d)),
that is Py = (0,0,0), P, = (L/n,0,0), Po_1 = (Z1 —
L/ncos(6),0,z3 — L/nsin(f)) and P, = (21,0, z3).
An equilibrium deformation is then obtained by
minimizing the elastic energy over the n—3 remaining
control points. To perform this task, we use the con-
jugate gradient method. The gradient of the elastic
energy is obtained by integrating over the plate the
partial derivative of (3), with respect to the free con-

trol points. Integrals are computed using Simpson’s
formula [15].

3 Path Planning

Below we give a high level overview of the prepro-
cessing and query processing steps of the planner and
discuss in details only the differences from previous
work [7, 9]. A crucial element in our planner is that it
uses deformations which are equilibrium deformations
given the grasping conditions and which are computed
as explained in Section 2.5. For the computation of
equilibrium configurations and equilibrium paths, we
decouple deformation and rigid-body transformation.

3.1 Preprocessing

The preprocessing step builds a roadmap according
to the following algorithm:

1For instance, for aluminum, £ = 74 MPa and v = 0.34.

1. Generate a set of values for the grasping param-
eters at random. Then compute an equilibrium
deformation corresponding to the limit conditions
induced by the chosen values and test if it fits the
elasticity limits of the material (see below). If it
does, generate N random rigid body transforma-
tions (with the same deformation) and test each
corresponding configuration for collision with the
obstacles.

2. Update the graph R = (V| F) in which E consists
of every pair of configurations that can be con-
nected with a local planner. Consider all existing
nodes for connections.

3. Identify “difficult” areas and refine sampling in
these areas by generating M more nodes (see dis-
cussion below). Connect the new nodes to R and
update R.

We now give some details about specific implemen-
tation choices for the preprocessing step.

Local Planner The local planner should have good
chances of success when the two nodes are close to-
gether. We represent a rigid-body transformation by a
translation vector and a rotation vector. A local path
is computed by linear interpolations in the parameter
space RS of the rigid-body transformation and in the
parameter space of the grasping conditions (Z1, Z3, é)
independently. The rigid body transformation is ap-
plied first. If a collision is detected during the rigid-
body transformation which is computationally faster,
the planner does not need to build the local path in
the deformation space. As seen previously, the grasp-
ing condition determines the position of some control
points of the Bézier curve: Py, P, P,_1 and P,. The
path followed by the n — 3 other control points is a set
of configurations minimizing the elastic energy for the
given grasping conditions. To approximate the corre-
sponding deformation path, we sample the grasping
condition path and we compute minimization at the
sample points. However, due to the possible existence
of different local minima of the elastic energy for a
given grasping condition, the path in the deformation
space can be discontinuous, even if the grasping con-
ditions vary continuously. To avoid this, and to make
minimization faster, we take as initial deformation of
the minimization procedure the equilibrium deforma-
tion of the former sampled grasping condition.

Elasticity Limit Our planner should ensure that
all used deformations are within elasticity limits of
the material of the plate so that the plate is not dam-
aged during manipulation. The linear elastic model is



usually valid only for small deformations: ¢ < €44,
where £,,4; 18 a constant depending on the mate-
rial. Out of the elasticity domain, the material has
an elasto-plastic behavior. That is, the unconstrained
shape of the object is different before and after the de-
formation and the material is irreversibly affected. To
avoid this, we have to test each randomly generated
deformation to determine whether it lies in the elas-
ticity domain. As seen previously, the deformation is
defined by two coefficients:

e Plane Strain Limit Given limit conditions, if
the corresponding isometric deformation space is
empty, the equilibrium deformation found by the
minimization procedure has a big plane strain and
it 1s rejected. Otherwise, the minimum will auto-
matically have small plane strain since the term
related to plane extension (5) is dominant in the
energy formula (3).

e Curvature Limit As seen from Figure 2, a cur-
vature x of the plate gives rise to an exten-
sion (on the upper surface): the straight line
of undeformed length dl = Rda is extended to
(R 4+ h/2)da, where R = 1/x is the radius of
curvature. According to its definition (1), the ex-
tension coefficient on the upper surface is

(R+%)?da”® — R*da®> h 1
R%da? o~ X

2R 2
april Thus, an isometric deformation 1s in the
elastic domain if its curvature is bounded by

28maz[h.

g =

Other Issues For a discussion on the enhancement
step of preprocessing see [9]. The RAPID collision-
checking library is used: our surface is triangulated
and tested for collisions as explained in [9)].

3.2 Query Processing

Given a roadmap R an initial and goal configura-
tions s and g, -PRM uses the local planner to connect
s and g to nodes s’ and ¢’ of the same connected com-
ponent of R. If successful, the component is searched
for a sequence of edges connecting s’ and g¢'.

4 Experimental Results

We run f-PRM on the example displayed on Figure
3 on an SGI R10000. Our code is written in C4++. Our
first environment comes from a car assembly [4]. We
treat the description of preprocessing in Section 3.1 as
a basic step that is repeated a number of times. The
parameters for the basic step of -PRM are N = 200,

(1) (!)\

(4) (5) (6)

Figure 3: Positioning a metallic belt in a pipe assem-
bly of a car.

(1) (2) (3)
(4) (5) (6)

Figure 4: Motion of an elastic plate in a tight envi-
ronment.

M = 100, and K = 20. K is the number of neigh-
bors considered for connection. During enhancement
the random walk consists of a maximum of 10 reflec-
tions, each of which can be 100 steps long (see also
[9]). The surface is represented by an 8 control point
Bézier curve. This problem, which is a 9 DOF prob-
lem, was solved in 7Th 7min with 25200 nodes. A com-
putationally expensive operation of the planner is the
construction of local paths. The reason is two-fold.
Firstly, for far away configurations, interpolating the
grasping conditions can lead to very large deforma-
tions that make the local planner fail. For this reason,



our planner works well for neighboring configurations
but paths tend to be short and many of them need to
be computed. Secondly, intermediate configurations
along the path need to be minimized and this is an
expensive operation.

Another challenging 9 DOF problem is shown in
Figure 4. In this example the surface 1s manipulated
inside a box. Note that our snapshots do not show
the upper and lower lid of the box for clarity pur-
poses. The planner was run with the same parame-
ters. The surface consists of 10 control points. It took
a roadmap of 26000 nodes to solve the problem.
Remark: To determine precisely the stress and strain
in the material, we would need appropriate models
with high dimensions (finite elements with hundreds
of points). However, simulations carried out with in-
creasing numbers of control points for the same grasp-
ing conditions showed that 8 to 10 control points give
a fairly accurate shape for the surface. In our sim-
ulations we considered curves with up to 50 control
points.

5 Discussion

This paper described a planner for an elastic plate
that is manipulated by constraining the position and
orientation of two opposite edges. A realistic mechan-
ical model simulates the behavior of the object under
manipulation. The underlying technique for solving
a planning problem consists in the construction of a
random roadmap in the configuration space. Our ex-
periments show that our new planner f-PRM can deal
with highly constrained realistic models.

Our work raises several interesting issues. These
include finding better strategies for the local planner
in order to improve its efficiency, more efficient en-
ergy minimization procedures, allowing more complex
manipulation constraints, developing geometric rep-
resentations that support them, and smoothing the
resulting paths to avoid unnecessary deformations.
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