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Abstract

Programmable force fields have been used as an abstraction to represent a whole new class
of devices that have been proposed for part manipulation. The general idea behind these
devices is that a force field is implemented in a plane upon which the part is placed. The
forces and torques exerted on the contact surface of the part translate and rotate the part.
Manipulation plans for these devices can therefore be considered as strategies for applying a
sequence of force fields to bring parts to some desired configuration. Instances of these novel
devices are currently implemented using MicroElecroMechanical Systems (MEMS) technology,
small airjets, vibration, and small motors. Manipulation in this case is sensorless and non-
prehensile and promises to address the handling of very small or very fragile parts, such as
electronics components, that can not be handled with conventional pick and place robotics
techniques.

In this paper we consider the problem of bringing a part to a stable equilibrium configuration
using force fields. We study the combination of a unit radial field with a small constant field. A
part placed on the radial field moves toward the origin of the radial field but cannot be oriented
due to symmetry. Perturbing the radial field with a constant force field breaks the symmetry
and gives rise to a finite number of equilibria. Under certain conditions there is a unique stable
equilibrium configuration. In the case when these conditions are not fulfilled, we provide a
comprehensive and unified analysis of the problem that leads to an algorithm to compute all
stable equilibrium configurations. The paper contains a detailed discussion on how to implement
the algorithm for any part. In our analysis, we make extensive use of potential fields. Using the
theory of potential fields, the stable equilibrium configurations of a part are equivalent to the
local minima of a scalar function. Qur work leads to the design of a new generation of efficient,
open-loop parts feeders that can bring a part to a desired orientation from any initial orientation
without the need of sensing or a clock.



1 Introduction

In automated manufacturing parts are typically stored in boxes and they have to be positioned
and oriented before assembly. This task is critical and strongly affects the productivity of the as-
sembly line. Orientation has been traditionally performed by vibratory bowl feeders [23]. Vibratory
bowl feeders are designed to orient a single part shape, therefore they have to be re-designed and
re-built to handle different shapes. Some recent research attempts to develop systematic approaches
for designing and analyzing vibratory bowl feeders [3, 33, 47|, while the mainstream research in
manufacturing has focused in developing more flexible and more robust platforms, such as pro-
grammable part feeders. This type of part feeder can be programmed to handle different parts
without the need for hardware modification [2, 6, 24, 32, 29, 28, 46, 53]. In particular, methods
that do not require extensive sensors are favored [2, 24, 29, 32, 53].

Another alternative that has been proposed a few years ago is the use of a new class of non-
prehensile devices for distributed manipulation. The general idea behind these devices is that a
force field is implemented in a plane and the part is placed on that plane. The forces and torques
exerted on the contact surface of the part translate and rotate the part. Examples of such devices
can be built, in microscale, with the use of MEMS actuators arrays [19, 7, 15, 8, 14, 18, 17], and
in macroscale, with the use of small mechanical motors [43, 45], vibrating plates [6, 49], or airjet
actuators [5]. Programmable force fields have been used as an abstraction to represent this new
class of devices. Manipulation plans for these devices can be considered as strategies for applying
a sequence of fields to bring parts to some desired configurations. Manipulation in this case is
sensorless and non-prehensile and promises to address the handling of very small or very fragile
parts, such as electronics components, that can not be handled with conventional pick and place
robotics techniques.

Several algorithmic results have been published associated with the capabilities and the limita-
tions of these new devices. A theory for programmable force fields was first introduced in [20, 19]
and developed in later work [15, 14, 21, 34, 13]. In the next section we survey previously published
results. A central assumption behind the algorithmic study of programmable force fields is that
practical implementations of programmable force fields are dramatically improving and hence it is
justifiable to look at the capabilities and limitations of programmable force fields independent of
their implementation. Our goal in this paper is to further understand what can be expected from
programmable force fields and not to advocate a particular implementation. We also hope that
the thorough study of the capabilities of programmable force fields will contribute to the design of
more robust and more efficient parts feeders.

In this paper we focus on studying the stable equilibrium configurations of a part under the
influence of a combined unit radial and constant field. An illustration of an instance of the field
is offered in Figure 1. A part placed on a unit radial field alone, moves toward the origin of the
radial field but cannot be oriented due to symmetry. Perturbing the radial field with a constant
force field breaks the symmetry and gives rise to a finite number of equilibria. Hereafter, when
we talk about an equilibrium of a part, we refer to both the position and orientation of the part.
In our earlier related work [13], we gave the conditions for the uniqueness of a stable equilibrium
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Figure 1: A Unit radial field combined with a constant field of magnitude 0.4 in the vertical
direction. (Reprinted from [13].)

configuration (see Figure 2), proving a long standing conjecture of [15]. In this paper we revisit
and expand this result. In the case where the conditions are not fulfilled, we propose an algorithm
to compute all stable equilibrium configurations. Our work settles some of the open questions in
[13]. We make extensive use of potential fields in our analysis. Using the potential field theory,
stable equilibrium configurations are equivalent to the local minima, of a scalar function. To arrive
to the proposed algorithm, we provide a comprehensive and unified analysis of the problem using
geometric interpretations when possible.

This paper is organized as follows. Section 2 surveys related work and highlights the contribu-
tions of this paper. Section 3 introduces the notation used. Because of the extensive notation in
this paper, we provide a table of all the symbols used at the end of the paper. Section 4 defines
stable equilibrium configurations using the traditional approach of forces and torques. In contrast,
Section 5 defines stable equilibrium configurations through the theory of potential fields. With
that approach equilibrium configurations become the minima, of a scalar function. In Section 6 we
analyze the properties of a combined unit radial and constant field. Section 7 defines the conditions
under which a stable equilibrium is expected. An algorithm to compute all stable equilibrium con-
figurations in the case of multiple stable equilibria is given in the same section. We present some
computed examples in Section 8 and conclude with a discussion and open problems in Section 9.

2 Related Work

Since 1994 a new class of devices has emerged for distributed part manipulation. Abstractly,
these devices implement a force field on a planar surface on which the part is placed. A central idea is
that the force exerted at every point can be explicitly programmed so that these devices can exhibit
different behaviors. Bohringer and Donald have coined the term “programmable force fields”
describe the manipulation strategies of these new devices. The new devices have several advantages.
Their reprogrammability renders them useful for different parts and diverse manipulation tasks.



Figure 2: Simulation runs for a part that has a unique stable equilibrium in the combined unit
radial and constant field. The magnitude of the constant field is 0.46 in the y-direction. In all runs
the part reaches the same final pose. (The simulator used includes inertia, viscous damping and
Coulomb friction [13].)

Manipulation is non-prehensile and one could hope that it will be appropriate for the handling of
very small or very fragile parts. In most cases, manipulation is also sensorless and the need of a
clock can be eliminated. Hence, the work can be seen as an effort to execute manipulation tasks
with the minimal amount of sensing that is required (see the discussion on minimalistic robotics in

[10, 24)).

Devices Many research efforts have been devoted to the construction of non-prehensile, dis-
tributed devices that can implement force fields on a planar surface. From 1993-1998, Bohringer
and Donald worked with Noel MacDonald at the Cornell Nanofabrication Facility to develop and
test new arrays of MEMS microactuators for programmable force fields [19, 7, 15, 17]. Bohringer
and Donald also worked with Greg Kovacs’ group at the Center for Integrated Systems at Stan-



ford, to develop a control system for MEMS organic ciliary arrays, and to perform experiments
with these arrays to manipulate IC dice using array-induced force fields [18, 52]. Hiroyuki Fu-
jita and his group have been developing distributed actuators by IC-compatible micromachining,
simulators and manipulation schemes for micromanipulation [35, 36]. Bohringer and Donald have
worked with Ken Goldberg at Berkeley and Vivek Bhatt at Cornell to generalize the theory to
macroscopic devices. They developed algorithms for transversely vibrating plates in order to im-
plement programmable force fields [6, 9]. Ken Goldberg worked with John Canny and Dan Reznik
at Berkeley, to continue research on using vibrating plates for manipulation, showing that longitu-
dinal vibrations can generate a rich vocabulary of programmable force fields [50]. In addition, John
Canny and Dan Reznik developed sophisticated dynamic models and dynamic simulators for both
MEMS devices and macroscopic vibrating plates and have investigated the design of devices with
a few degrees of actuation freedom for part manipulation [48, 49, 51]. Peter Will and his colleagues
at USC-ISI have explored a number of different MEMS array designs, as well as algorithms and
analysis tools for programmable force fields [26, 27, 40]. Andy Berlin, David Biegelsen, Warren
Jackson and colleagues at Xerox PARC have developed a novel MEMS microactuator array based
on controllable airjets, with integrated control and sensing circuitry [5, 25, 4]. Working at CMU,
Bill Messner and Jonathan Luntz developed a small room whose floor is tiled with controllable, pro-
grammable, macroscopic wheels that can be driven and steered to manipulate large objects such
as boxes [41]. Their system employed distributed, local controllers to implement programmable
force fields. Together with Howie Choset, they analyzed the resulting dynamical system to obtain
interesting results on controllability and developed programmable force field algorithms based on
conservative vs. non-conservative fields [42, 43, 45]. Mark Yim at Xerox PARC [54, 55] and Daniela
Rus at Dartmouth [37] are also building reconfigurable devices that can execute complex gaits and
could be used to implement certain force fields. Working with the Berkeley Sensor & Actuator
Center (BSAC), Karl Bohringer and Ken Goldberg explored how MEMS devices employing elec-
trostatic fringing fields can be used to implement programmable force fields for parts manipulation
and self-assembly [22]. Many more references on distributed manipulation devices can be found in
[11].

Algorithms Since 1994 Bohringer and Donald have advocated that there is a wealth of algorith-
mic problems on programmable force fields. Indeed, the amount of work in this area and the results
produced have justified their claim. A lot of recent work has been on the problem of positioning
and orienting a part which is the topic of this paper. Hence we survey results related to finding
stable equilibrium configurations of a part. Our list below is not exhaustive. For more information
the reader is referred to [19, 15, 16, 34, 13]. In a programmable force field, every point in the plane
is associated with a force vector in the plane. When a part is placed on a force field, it experiences
a translation and re-orientation until an equilibrium is reached.

e A unit squeeze field is defined as f(x,y) = —sign(z)(1,0). When a part is placed on a squeeze
field, it experiences a translation and re-orientation until a predictable equilibrium is reached
[19]. Bohringer and Donald [19] showed that given a polygonal part P with n vertices, there



exist O(n2k) stable equilibrium orientations for P when placed on f (k is the number of
combinatorially distinct bisector placements for P. For details on combinatorially distinct
bisector placements see [16].). This result was used to generate strategies for unique parts
posing (up to symmetry) by reducing the problem to a parts feeding algorithm developed by
Goldberg [31]. The strategies have length O(n?k) and can be generated in O(n*k?) time.

e In later work the same researchers improved the length of their manipulation strategies. In
[15] the length was reduced to O(nk) and the planning time O(n2k?), by employing combined
squeeze and unit radial fields. Unit radial fields are defined as r(z,y) = (—1/v/z2 + y2) (=, y).

e Using elliptic force fields f(z,y) = (—az, —fy) with 0 < a < 3, Kavraki [34] reduced the
number of stable equilibrium configurations for most parts to a constant number (2) inde-
pendent of n. In the same paper, an investigation of the effect of control uncertainty on the
stability of equilibria was performed. There is an interesting tradeoff made with elliptic fields.
For an added complexity in the implementation of the fields (varying magnitude), one is able
to reduce the length of the manipulation strategy to a single step eliminating the need of a
clock.

e Bohringer and Donald conjectured in [15] that a field which combines a unit radial and
constant field (r 4+ d¢ where c(z,y) = (0,—1) and § is a small positive constant) has the
property of uniquely orienting and positioning parts. We call this field the unit radial-constant
field. The inspiration for using the above field draws from the work of Erdmann [1] on
universal grippers. In a universal gripper a part is free to rotate after being picked up from
an arbitrary initial state. Its center of mass will settle at the unique minimum of potential
energy, causing the part to reach a unique, predictable equilibrium. The conjecture in [15]
was not proven until much later in [13] by Bohringer, Donald, Kavraki and Lamiraux. The
authors showed that for any non-symmetric part, there is a unit radial-constant field inducing
exactly one stable equilibrium. Symmetry is defined by considering the behavior of the center
of mass of the part when the part is under the influence of only a unit radial field: if the
center of mass of the part is at the origin of the init radial field at equilibrium, then the
part is symmetric; otherwise it is non-symmetric. The paper left open the question of what
happens in the case of symmetric parts.

Contributions of This Paper Recent work on symmetric parts under the influence of a com-
bined unit radial and constant field includes [39, 38]. As discussed above, for symmetric parts the
center of mass of the part ends up at the origin when the part is under the influence of a unit-radial
field. Rectangle or regular polygons are instances of symmetric parts. The present paper unifies all
previous results on the unit radial-constant fields and exhaustively examines the case of symmetric
parts. We present an algorithm that commutes all stable equilibrium orientations for a part, sym-
metric or not. Our work could be used to build a universal parts feeder (inspired by the “universal
gripper” as proposed by Abell and Erdmann [1]). In contrast to the universal manipulator fields
proposed in [49], such a device could uniquely position a part without the need of a clock, sensors,



or programming.

Our analysis is based on a treatment of the problem through the use of potential fields. Former
work on force fields mostly defines equilibrium configurations from a mechanical point of view,
using force and torque. Potential fields however are a helpful tool to characterize stable equilibrium
configurations as local minima of a potential function. This tool was first introduced in [15], where
the authors showed that if the force field in the plane derives from a potential field, this potential
function, as well as the force field, can be “lifted” to the configuration space. They proved that
any path integral of the lifted force field between two configurations is equal to the difference of
the lifted potential field between these configurations.

In this paper, we first reformulate the results in [15] using a different approach based on partial
derivatives instead of path integrals. We show in Section 5, that for any compact part in any
potential field, the lifted potential field is C'. Therefore, the stable equilibrium configurations
and local minima of the lifted potential field are the same. These results constitute the basis for
determining the equilibrium configurations of a part placed in the combination of a unit radial and
a constant force fields. The basic properties of a combined field are established in Section 6. These
properties enable us to devise, in Section 7, an algorithm that determines the set of equilibrium
configurations of any part subjected to combined unit radial and small constant field.

3 Notation

In this section, we provide the core notation and definitions used throughout the paper. A table
of all symbols used is available at the end of the paper.

If E is a set, we denote int(E), E, and OF respectively the interior, the closure and the boundary
of E.

Let us consider a part in the plane occupying surface S with center of mass G at (0,0) in a
reference configuration qg. Suppose that S is a compact set and that its boundary 95 is a zero-
measure subset of the plane. The configuration space of the part is C = R? x S!, where S! is the
unit circle. A configuration q = (z,y,0) € C corresponds to a rigid-body transformation ¢q in the
plane transforming r = (£, 7) into

(r) = T 4 cosf —sind £\ [ z+cosb—sinbn
Pall) = y sin cosf n ) \ y+sin@¢+cosby |’

If E is a subset of R?, we denote by E; = ¢q(E) the image of E by ¢q. For instance, Sq is the subset

occupied by the part in configuration q. We also denote by dc(q,q’) = v/(z —2')2 + (y — ¥')2 +
|6 — 0'| the distance between q and ' = (z,%/,6). All calculations on 6 are done mod 2.

4 Conditions for Equilibrium Configurations: The Force and Torque Approach

We investigate the conditions for equilibrium for a part of uniform support in the presence of a
force field f : R? — R2. Without loss of generality, we assume that the the origin of the reference
frame in the plane can be chosen as the center of mass of the part.



When a part is placed on a force field f(r), the resultant force and torque it is subjected to are the
following;:

Fq) = /S £(r)dr, (1)
M(q) = /S (r - rg) x £()dr, (2)

where rg = (z,y) is the position of the center of mass G, when the part is at configuration q. We
say that q is an equilibrium configuration if the resultant force and torque vanish at q:

F(q) = 0,
M(q) =

Moreover, an equilibrium configuration q is said to be stable if, subjected to a small perturbation,
the part stays in the neighborhood of q.

5 Conditions for Equilibrium Configurations: The Potential Field Approach

Another way to analyze equilibrium configurations is through the theory of potential fields.
Potential fields have been extensively used in mechanics and electrostatics. They are very helpful
in studying stable equilibrium configurations of a particle because these configurations are exactly
the local minima of a potential function. Potential fields can also be used to study the equilibrium
configurations of a part and this was first suggested in [15, 17]. We expand and generalize that
work.

To avoid confusion of notation, we will use ¢ and 7 as coordinates of a point in R?. Let us recall
that x and y denote the coordinates of the center of mass of the part. Let us consider now a force
field f(&,7n) over the plane, continuous almost everywhere (i.e., everywhere except on a subset of
measure zero). We say that f(£,7) derives from a potential function u(&,n) if u is continuous over
R? and f = —(g—g, g—:;‘) almost everywhere in R2. Notice that the force field does not need to be
continuous everywhere to define the potential function w.

In [15] a potential field U(q) in the configuration space is defined by integrating the potential
function u in the plane over the space Sq occupied by the part in configuration q. The authors of [15]
show that for polygonal parts, this field is continuously differentiable and its partial derivatives are
the opposite of the resultant force and torque that the part is subjected to. Such a correspondence
establishes an equivalence between stable equilibrium configurations of a part and local minima of
the lifted potential field U.

In this section, we generalize the above correspondence to non-polygonal parts. In this way,
we will be able to use the theory of potential fields for reasoning about the equilibria of any
part in the plane. Most importantly, we show that the above correspondence is a consequence of
the commutativity between two operators acting on scalar functions in R?: integral and partial
derivatives. Hence, the property is intrinsic to the field and does not depend on the system of
coordinates over the configuration space.



To ensure the existence of the resultant force and torque (1) and (2) for any compact part in

any configuration, we assume that wu, g—g and g—: are integrable over any bounded set.

5.1 Lifted Potential Field

As we are reasoning on rigid parts and not on single particles, we need to “lift” the potential
field from the plane to the configuration space. We use the lifted potential field U as introduced in
[15].

Definition 1. (Lifted potential field) Let u be a potential field. The function
U(q) 2/ u(r)drz/u((pq(r))dr
Sq s

over the configuration space is called the lifted potential field induced by u.

Our goal in this section is to show that stable equilibrium configurations and local minima, of
the potential field U are the same. For that, we first show that U(q) is of class C! and that the
resultant force and torque Fj, F;, and M are respectively the partial derivatives of U w.r.t. =z,
y and 6. Under these conditions, if q is an equilibrium configuration, the partial derivatives of
U vanish at q by definition. Moreover, q being a local minimum ensures the stability of a small
neighborhood around q.

Proposition 1. U is of class C' and

ou

8—$(q) = —Fy(q), (3)
‘Z—Z(m — —Fya) (4)
2@ = M) )

Proof. In [15, 17], the authors prove using path integrals that

e relations (3), (4), and (5) are satisfied if the right hand sides of these equations are continuous
w.r.t. q,

e the right hand sides of (3), (4), and (5) are continuous if the part is a polygon.

We need only to prove the continuity of Fy(q), Fy,(q), and M(q) for a general (non polygonal)
part. We do the proof only for F,(q); F,,(q) and M(q) can be treated similarly.

First, let us point out that for any bounded subset B C R?, there exists a positive constant b
such that:

Vr € B, [lpq(r) — pq (r)l| < bde(q, q)- (6)



b can be chosen as max{||r||,r € B} + 1, for instance. This inequality means that if two configura-
tions are close, displacements of points between these configurations are small. Notice that

" — = ou r)dr — du r)dr
|Fo(d) — Fu(aq)| = S 35( )d . 35( )d (7)
ou
= /(squsq,)\(sqmsq,) %(r) dr. ®)

We want to show that when d¢(q,q’) tends toward 0, so does the second term of the former
inequality. Let us denote by 0S54 the boundary of Sq. We are going to show that there exists b > 0
such that if d¢(q,q’) < 4,

(SqU Sq) \ (SqN Sqr) C (asq)bza (9)

where (Sq)% denotes the set of points at a distance not greater than b¢ from Sg.

Let us consider p € (SqU Sy) \ (SqN Sq)- Then,

peSqy and p¢Sy,
or

p¢Sq and pe€Sy.

In the first case, we define r = (p;,l (p)- Then p = @ (r) and r ¢ S since p ¢ Sy (see Figure 3).
Let us now consider p’ = @q(r). p’ ¢ Sq since r ¢ S. Without loss of generality, we can assume
that d¢(q,q’) is bounded by a constant and therefore constrain r to remain in a bounded set B.
Then, we can apply (6) to get |[p — p'|| < bl. As p € Sq and p’ ¢ Sy, we can easily show that
the line segment [p,p'] crosses 0Sq and therefore that dist(p,dSq) < b¢, which is equivalent to
p € (054)%.

\\\\\\\\\\\\ RN
\ii\\\\\\\g\\\\\

O \\§\\\\\ \“\\"‘s‘g\t\\\\

‘ RO
(05, -7 AR >
pl

Figure 3: p and p' are the images of the same point r by respectively ¢ and ¢q. Therefore, if de(q,q’) <1,
the distance between p and p’ is less than b, where b is defined in equation (6).

10



In the second case, there exists r € S such that p = ¢q (r). If we consider now p’ = ¢q(r), p’ € Sq
and again ||p — p’|| < b4. For the same reason as above, p € (854)%
(8) and (9) together imply that

F) -Bl< [ g

(8Sq)% is an increasing family of sets, that is £ < £' = (984)* C (8Sq)% .
As 0S4 is compact, Ny (0Sq)% = 0S4 and

i IF() ~ Fulal = [ G

a'—q

The right hand side of this equation is 0 since 9Sq is a set of measure zero and g—g is locally
integrable. Thus, F;(q) is continuous. The same proof applies as well to Fy(q) and M(q). O

In the next two sections, we give some interesting and original interpretations of Proposition 1.

5.2 Physical Interpretation of Proposition 1

According to the fundamental principles of mechanics, along a trajectory of the part, the vari-
ation of the kinetic energy Ej is equal to the power that the force field communicates to the part:
dEy dx dy do

= F, F M=
dt dt+ ydt+ dt

OUdz oUdy  0OUdo

eatayntwa

du
-
Thus, U + E}, is constant along the trajectories of the part. This constant is called the mechanical
energy of the system. Proposition 1 establishes an equivalence between a local minimum of U
and a stable equilibrium configuration. Indeed, if q is a local minimum and if the part starts
from q with a small kinetic energy e, the part necessarily stays in the neighborhood of q, where
U(q) <U <U(q) + &. This neighborhood can be made as small as desired by decreasing e.

5.3 Commutativity of Integrals and Partial Derivatives

Beyond the former physical interpretation of Proposition 1, we would like to point out the
mathematical meaning of this result. Definition 1 defines U(q) by integrating the potential field
over the domain occupied by the part in configuration q. Notice that this definition is independent
from the coordinate system used to describe the configuration q. If we rewrite q = (¢1,42,93), a
quick calculation shows that equations (3-5) are equivalent to

0 .
an / u(pq(r))dr = / 90, r)))dr, 1=1,2,3.

11



In other words, the partial derivatives commute with the integral. This property is the counterpart
of the commutativity pointed out in [17] between path integrals and surface integrals. This latter
formulation however, is subordinate to the coordinate system (x,y, @) over the configuration space.

Formulated with partial derivatives, the above commutativity can be generalized to any param-
eterization of the configuration space. Indeed, if (¢}, g5, 3) is another system of coordinates around
q, we can write

oU . qu

- Z‘;?; /S o (ulpale)))dr

-/ z‘gjf (u(pq(r))dr

- /S @(U(wq(r)))dr

Thus the commutativity property is true for any system of coordinates over the configuration space.

The next section introduces in detail the unit radial field. We will use a system of coordinates
that exploits the radial symmetry of the field. In this system of coordinates, the lifted potential
field depends only on two configuration variables. The above commutativity property will play
crucial role in our proofs.

6 Combination of a Unit Radial Field with a Constant Field

In the previous section, we pointed out the equivalence between local minima of the potential
field and stable equilibrium configurations. In this section, we investigate a class of potential fields
obtained by adding a unit radial field and a small constant field. We give conditions under which
a part can be uniquely positioned in such a combined field. If these conditions are not fulfilled, we
provide an algorithm to determine all stable equilibrium configurations. Some parts of this work
have been presented in [13, 39, 38]. In particular, the conditions under which unique orientation is
obtained and the related proof were given in [13]. We need to repeat these here for completeness
reasons and for making possible the discussion of what happens when the conditions for equilibrium
are not fulfilled. However, in this paper our proofs are more detailed, unify previous results and
cover cases that we not covered in previous work in [13, 39, 38].

6.1 Unit Radial Field

We first establish the notation and give some definitions relative to the unit radial field. We
also prove some properties of the lifted potential field associated to the unit radial field.

12
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Figure 4: Unit radial potential field: v(£,n) = /€2 + 2.

We call unit radial field the force field of unit magnitude everywhere pointing toward the origin
(0,0):
r

f(r) = —m.

This force field derives from the potential field v(r) = ||r|| = /&2 +n?. This potential field is
smooth (C'*°) everywhere except at the origin (see Figure 4). v is clearly symmetric by rotation
about the origin. Thus if ¢’ is obtained from q by a rotation about the origin, the values of the
lifted potential field at q and q' are the same. To take fully advantage of this property, we are
going to use a new system of coordinates (X,Y, ) for the configuration of the part, illustrated in
Figure 5 and defined by:

X = cosfz + sinfy,

Y = —sinfz + cosby.
Sq 9
(z,y)
Jo 0
s|lo \
N \(X,Y)

Figure 5: Parameterization of the configuration space with the system of coordinates q = (X,Y,6). ¢q
corresponds to a translation of (X,Y") followed by a rotation of angle § about the origin.

Expressed in this system of coordinates, the lifted potential field V' corresponding to v depends

13



only on X and Y and can be written as follows:

V(X,Y,0) = /S o(X +€,Y +n)dédn.
Because of the independence on 6, we will consider V' as a function of (X,Y’) only. Notice that when
0=0,X=zandY =y. V(X,Y) =V(z,y,0) can thus be considered as the lifted potential field
of the part in translation. This interpretation can be helpful to understand some of the forthcoming
developments.

We now point out some useful properties of the radial field. First, we show that V(X,Y’) has a
unique local minimum. For that, we show that V is of class C? and that its Hessian Hess V (X,Y)
is positive definite everywhere. The results of Section 5 establish that V is C' and that its first
order partial derivatives are the integrals of the partial derivatives of v. The following proposition
states that the commutativity between integrals and partial derivatives extend to the second order
partial derivatives.

Proposition 2. V is of class C? and

Wixy) = Sg—z(X+£,Y+n)d£dn (10)
g—g(x,y) - Sg—;’(XJrf,YJrn)d&dn (11)
%(X,Y) = S%(X+§,Y+n)d£dn (12)
OV XY - Sgin";(ms,ﬂn)dfdn (13)

Proof. The proof of Proposition 2 requires some technical developments given in the Appendix.
We present here only the main ideas.

First notice that (10) and (11) are direct consequences of Proposition 1. The standard results
of the theory of integration lead easily to the following statement: if v is C? and if all its partial
derivatives up to second order are integrable, then V is C? and its partial derivatives are obtained
by integrating the corresponding partial derivatives of v(X + £, Y + n). In the case of the unit
radial field v, the partial derivatives of v up to second order are integrable. However, v is not C? at
the origin. To overcome this difficulty, we define C? approximations v, of v equal to v everywhere
except on the disc centered at the origin and of radius h > 0. The corresponding lifted potential
field V}, is thus C? and its partial derivatives are obtained by differentiating in the integral. It can
be then easily stated that as long as the disc of radius h remains completely inside or completely
outside the part, the difference between V and V}, is constant and thus on these subsets, V is C?.
By making h tend toward 0, we ensure that the partial derivatives up to second order of V are
continuous even when the origin of the radial field crosses the boundary of the part. O
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The unit radial field is smooth everywhere except at the origin. Thus, when the part is not above
the origin, we should expect the lifted potential field V' to be smooth. We will show that in fact,
if the part is above the origin, the lifted potential field is still smooth. The singularity affects the
lifted potential function only when the origin crosses the boundary of the part.

The boundary of the part divides the configuration space into 3 subsets:

o the set C° of configurations q such that the origin of the radial field is outside Sq: (0,0) ¢ Sq,

e the set C'™™ of configurations q such that the origin of the radial field is inside Sq: (0,0) €
int(SQ)a

e and the set C®?“"¢ of configurations q such that the origin of the radial field is on the boundary
of Sq: (0,0) € 054.

A straightforward calculation shows that whether a configuration q is in C?%, C™", or C?*%"¢ depends
only on (X,Y). Indeed,

qecm & (—X,-Y) €int(9),

qeC™ & (-X,-Y)¢s,

qechund o (—X,-Y)€dS.
Figure 5 provides some intuition of these equivalences: (—X,—Y') € int(S) means that the origin is
inside the part translated by (X,Y). Then, the rotation of the part about the origin does not affect
the position of the origin w.r.t. the part. The following proposition is essential for the analysis in
the rest of this section.

Proposition 3. V(X,Y) is smooth over C™ and over C°*.

Proof. In the proof of Proposition 2, given in the Appendix, we constructed a family v, of C?
approximations of v. Following the same idea, and using the same notation, we now consider
another family of potential fields vy (r),h > 0 such that

e vy,(r) is smooth over R? and
e vp(r) = v(r) for any r verifying ||r|| > h.

vp(r) can be constructed by multiplying v(r) by a smooth function pp(r) equal to 1 outside the
disc of radius h and to 0 inside the disc of radius h/2. See [30] for a method to build the functions

Ph-
Let V}, be the lifted potential field corresponding to vy,. If we denote by Dy (X', Y”') the disc of

radius h centered on (X', Y’), for any (X,Y) € R?, we have
Va(X,Y) - V(X,Y) = / (o — 0)(X + &Y +n)dédn (15)
S
-/ (o —v)(X + &Y +n)dedn (16)
SﬁDh(—X,—Y)

since by definition, the integrand is zero outside Dy (—X, -Y).
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Let us consider ' = (X’,Y’,0") a configuration in C*". As stated above, (—X', —=Y’) € int(S).
Therefore, there exists @ > 0 such that D,(—X', —Y") C int(S).
If h < §, for any (X,Y) € Dp(X',Y"), Dp(—X,—-Y) C S and (16) becomes

BEY) V) = [ oY ey
= [ - oEndan
D (0,0)

using the change of variable (£,7) < (X + &, Y + 7). We notice then that V,(X,Y) — V(X,Y) is
independent of (X,Y") in a neighborhood of (X', Y"). Moreover, as v, is smooth, so is V},. Therefore,
V is also smooth in a neighborhood of (X', Y”).

The case q' € C°% is similar: for h small enough, S and D, (—X,—Y) are disjoint, so that (16)
is equal to 0 and V}, being smooth implies that V is also smooth. ]

Minimum of V and Pivot Point

Although the unit radial field is unable to orient a part, due to its symmetry, it has the property to
make the part converge toward the center of the field. The set of all the equilibrium configurations is
stable under rotation of the part about the center of the field. Thus, for any of these configurations,
a point fixed relative to the part remains at the center of the field. This point is called the pivot
point of the part and will be denoted by P. This point was first defined in [15]. Note that the
pivot point is only defined for the unit radial field and not for a general radial field. We give in this
section a different proof of its existence and uniqueness using our potential field formalism. Parts
of the rest of this section were given in [13] but in that paper they applied to a more restricted
case.

With our notation, the existence and uniqueness of the pivot point is a consequence of the
following proposition.

Proposition 4. V wverifies the following properties:
(i) The Hessian of V Hess V(X,Y) is positive definite everywhere in R?,
(i4) V has a unique local minimum over R2.

Similar to [13] . As Hess V is a 2 by 2 matrix, (i) is equivalent to

tr Hess V(X,Y) > 0,

Y(X,Y) € R?,
( ) det Hess V(X,Y) > 0,

where tr and det are respectively the trace and determinant operators. According to equations
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(12-14), the second order partial derivatives of V' are

o2V B (Y 4+ n)?
) = [ (X107 + (v 1ol
9%V B (X +¢6)?
) = | (X102 (v 1 n2pr

ov _ ~(X +8(Y +n)
0XoY (X,y) = /S (X+2+ (Y + n)2)3/2d§dn'

It is straightforward from these expressions that tr Hess V = g;‘g + g% is positive everywhere.
The determinant of the Hessian of V'
0?V 0%V 0%V
2 2 ( )2 (Xa Y)
0X?29Y 0XoY

detHess V(X,Y) = (

is the sum of two terms, each of which is a product of two integrals over S. Replacing these products
by integrals over the Cartesian product S =S5 x S:

( /S f(f,n)dfdn> ( /S g(f,n)dédn) = /S F(&1, ) g(Eamo)dE 1 dm dEadns

and condensing the notation as follows, X; = (X +¢&;), Y; = (Y +n;) for i = 1,2, dS = d&1dn1déadns,
we get

XYy
(XT +YP)32(X3 +Y5)3/?
X1Y1 XY,
- /5 (X? + Y2)3/2(X3 + Y3)3/?
B / YAXF - XiViXaYs
S? (Xl2 + Y12)3/2(X§ + Y22)3/2 .

det Hess V(X,Y) = / as
S

s

In the first integral, (X1, Y1) and (X2, Y2) have a symmetric role and can be switched so that X?Y;?
can be replaced by 3(X?Y? + X2Y?) and
1 X2Y2 + X2Y? - 2X1V1 XoYs
det H X, Y) = = 1-2 21
s VIXY) = 3 o e vpprcg + vz

1 / (X1Ys — XoY7)?

2 Jor (XT 4+ Y2)3/2(X3 +Y3)3/2
> 0.

ds

Thus Hess V is positive definite everywhere. This ensures us that if V' has a local minimum, it
is unique. Moreover, as v(r) tends toward infinity when ||r| tends toward infinity, V(X,Y") also
tends toward infinity as (X,Y’) diverges. This property implies the existence of a local minimum
of V. O
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We denote by (X, Yy) the unique minimum of V. The set of equilibrium configurations of the
part under the radial field is the following {(Xg,Yp,0),0 € S'}. Let us express this curve in the
classical system of coordinates:

xr = XgcosfO — Yysinb,

y = Xpsinf + Yjcosh.
As expected, the set of equilibrium configurations is obtained by rotation of the part about the
pivot point. As V' does not depend on 6, we can consider the case § =0, where z = X and y =Y.

In the corresponding equilibrium configuration, the center of mass is thus translated to (Xy,Yp) and
P is located at the origin. As a consequence, in configuration qq, P is at (—Xy, —Yp) (Figure 6).

Y

(Xo, o)

Figure 6: In the equilibrium configuration corresponding to § = 0, the center of mass is at (Xo, Yo)-

6.2 TUnit Radial Combined With a Constant Field

The former section established the existence and uniqueness of the pivot point. In this section,
we perturb the radial field by adding a small constant field in order to break the symmetry. Using
the results of the previous sections, we are going to show that for each orientation # of the part,
the corresponding lifted potential field has a unique minimum in (X,Y’) and that when 6 varies,
the curve of these minima is continuous and smooth if the pivot point is not on the boundary of
the part. We call this curve the equilibrium curve. Then we will give a characterization of the local
minima of the lifted potential using the equilibrium curve. This characterization will reveal crucial
in the following section to determine the set of stable equilibrium configurations.

We now consider the potential function (Figure 7):

u(r) = v(r) + dn,

where v is the unit radial field and § a positive constant. The second term dn corresponds to the
constant force field —§(0,1). The lifted potential field for a given value of § can be expressed as
follows in the (X,Y,0) system of coordinates:

Us(X,Y,0) =V (X,Y) + 6|S|(sin0X + cos0Y), (17)
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where |S| is the area of S. For clarity purposes, we define the following functions
UO,J(X7Y) = U(X, Y70,5) = UJ(Xa Y, 9)7

where the variables we put in the subscript are considered constant.
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Figure 7: Radial-constant potential field.

Minimum of Uy ; and Equilibrium Curve

The second term of the right hand side of Expression (17) is linear in (X,Y’). For this reason,
Up s has the same second order partial derivatives as V and Hess Uy 5 = Hess V is positive definite
(Proposition 4). For any fixed value of § and § < 1, Uy 5(X,Y’) tends toward infinity with (X,Y’).
Thus, Uy s has a unique local minimum. We denote by (X*(6,4),Y*(0,)) this local minimum. We
can express it in the standard system of coordinates by:

z*(0,0) = cosf X*(0,6) —sinf Y*(6,0), (18)
y*(0,9) sin® X*(0,6) 4+ cos0 Y*(6,0). (19)

For each value of § < 1, these local minima define a curve of parameter 6 that we call equilibrium

curve. We are going to show now that this curve is of class C'! and smooth for small values of § if
the pivot point is not on the boundary of the part.
Notice that (X*,Y*)(0,0) = (Xo,Yp) is the minimum of V' and therefore is independent of 6.

Proposition 5. The equilibrium curve is smooth.
(i) X*, Y*, z* and y* are continuously differentiable.

(i) if (—Xo,—Yo) ¢ OS (i.e., the pivot point is not on the boundary of the part), there exists dy
such that X*, Y*, z* and y* are smooth over S* x [0, &g].

Proof. (i) This proposition is a direct result of the implicit function theorem. We define the following
function from R* into R?

(g_U
F:(X,7,0,6) > | 3%
Y
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From (17), as V is of class C? (Proposition 2), F is of class C!. By definition, the equilibrium
curve minimizes the lifted potential field for fixed 6 and § and therefore fits the following implicit

representation:
F(X*,Y*6,6) =0.

The differential of the partial function Fy s of the variables (X,Y) is exactly the Hessian of V.
From Proposition 4, this differential is invertible everywhere. According to the implicit function
theorem, these conditions imply that X* and Y* can be expressed as C' functions of (6, ). As the
equilibrium curve is unique, these C'! functions are necessarily the formerly defined X*(6,§) and
Y*(6,0).

(ii) If the pivot point is not on the boundary of the part, —(X*(0,0),Y*(6,0)) ¢ 0S, by the continu-
ity of X* and Y'*, there exists a Jy such that for any § € S' and 0 < § < &, —(X*(0,0),Y*(6,9)) ¢
0S. In other words, if we follow the equilibrium curve for a small d, the origin of the field remains
completely inside or completely outside the part and (X*,Y*,0,§) remains in a domain where F'
is smooth (from Proposition 3). Therefore, according to the implicit function theorem, X* and
Y™ are also smooth. Relations (18) and (19) state that z* and y* have the same differentiability
properties as X* and Y*. O

From now on, we will assume that the pivot point is not on the boundary of the part, so that
the partial derivatives of the equilibrium curves are all defined for small §.

We now point out a property of the equilibrium curves that will constitute the basis of our
method to determine the local minima of U. For a fixed value of § the local minima of U are
obviously on the equilibrium curve associated to §. We are going to show that these local minima
are the points where (z*,y*) crosses the y axis from z < 0 to z > 0. For that, we define

Ug(@) = UJ(X*(H’ 5),Y*(9,5),9),

the minimum value of the lifted potential field for given 6 and §. The variation of U; () along the
equilibrium curve is given by the following proposition.
Proposition 6. For any § € S',
du;
do
Proof. (From [13]) For clarity, we omit ¢ in the notation of this proof. By definition Uj () =
Us(X*(0),Y*(0),0). Differentiating this expression w.r.t. to 8 leads to

(0) = 8|S|z* (8, 6).

du;i oUs , . X dX* oUs , . N dy*
o) = S0, 0,0) S0+ 5 (0, 70,0 S 0) +
OUs - ru e
O (X°(0),Y*(6),0)
= (X0, 0),0
= 0|S|(cos @ X* (@) — sinf Y*(0))
= 06[S|z*(9),
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using the expression (17) and the fact that the partial derivatives of Us w.r.t. X and Y vanish at
(X*,Y"). O

This proposition leads directly to the following property.

Proposition 7. For any fized value of §, the two following properties are equivalent:
(i) (X,Y,0) is a local minimum of Uy,
(ii)) X =X*(0,9),Y =Y*(0,0) and the equilibrium curve
crosses the y-axis from left to right when 6 increases:
z*(0,8) =0, z*(0~,8) <0, z*(0T,8) > 0.

7 Computation of All Stable Configurations of a Part Under the Combined
Unit Radial and Constant Field

Proposition 7 provides a characterization of the stable equilibrium configurations of a part
subjected to a combination of a unit radial field and a constant field, in terms of intersection of the
equilibrium curve with the y-axis. For a general part and a given value of d§, these configurations
can be computed numerically. In [12], such simulations are carried out and the results of these
simulations are consistent with the conclusions of our theoretical developments. However, numerical
simulation is time-consuming and may yield results difficult to interpret, especially for limit values
of §, where the equilibrium curve becomes tangent to the y-axis. In this section, we give a method
to predict the equilibrium configurations for small values of d, using the fact that z* is smooth.

7.1 Partial Derivatives of z* and Local Minima of Uj

In general, we do not have an expression of £*(6, §). Otherwise, stable equilibrium configurations
would be determined by solving z*(#,d) = 0 and by applying Proposition 7. However, for small
values of §, we can exploit the continuity of the partial derivatives of z* using the following idea.

Let us assume that we are interested in the sign of a smooth function f(¢) for small values of 4.
If f(0) # O there exists an interval of § containing 0 over which f(J) has the same sign as f(0). If
f(0) =0, and if %(O) is the first non-zero derivative of f in 0, we can approximate f around 0 by
f(0) ~ %—7{(0)% (Taylor expansion) and conclude that there exists a small interval of § containing
0 over which f(d) has the same sign as %(0).

The following theorem states that this property applies to z*(#,d) for small § and uniformly
over @, that is z*(#,0) changes sign around the same values of 6 as the first non-uniformly zero
%(9,0) (see Figure 8).

Theorem 1. If there exists an integer n > 0 such that
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(i)  for any k such that 0 <k <n-—1, 866‘@ (0,0) =0
uniformly over S!,

(i) aandn (0,0) vanishes only at a finite number of points
(61, ...,00m), and

(i1i)  for any 1 <1< m, fﬁ;gn (62,0) > 0, %(921_1,0) <0,

then for small values of §, the part has exactly m stable equilibrium configurations, and these
configurations converge toward (z*(09;,0),y*(09,0),09), 1 <1 < m, when § tends toward 0.

Figure 8: The first non-uniformly zero partial derivative of z* w.r.t. § provides all the information about
the local minima of Us for small values of 4.

Proof. Let us first notice that a;egldn (f2k,0) represents the slope at g of ‘2;25—9”,:(0 0) seen as a

function of §. Therefore condition (iii) above means that & a&n “(6,0) changes sign at each 6; for
1 <1< 2m.

All the partial derivatives of z* are continuous. Thus, from condition (iii), there exist two

positive numbers « and ¢; such that for any positive real number § < §; and any integer | between
1 and m,

VO € (0 — v, O + ), O (0,0) > (20)

VO € By 1 — 0y 1 +a), L2(6,0) < 0.
Let us denote by I the union of the intervals of 8 defined above

I= U 0 — a,0, + )

1<i<2m
and by J = S'\ I the complement of I (see Figure 8). The proof consists of two parts:

1. We first prove that over each interval constituting I, for small fixed §, the slope % of z*
keeps a constant sign and therefore z* vanishes only once over each of these intervals.
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2. Then, we show that, for small §, z* does not vanish over J.

Let us consider each part separately. 1. Differentiating the equation defined in (i) w.r.t. 6, we get

that, for any £k <n —1,
ak-f—l *

0006k (

uniformly over S'. If we take a fixed 6 in the interval (fy — «, 8y + o), and we consider %(9, d)
as a function of § that we temporarily denote by f(d), (21) can be rewritten

9,0) =0 (21)

o'
ook
Moreover, (20) implies that V4§ € [0, d1],

(0)=0 for 0<k<n-—1. (22)

5 (8) > 0. (23)

Therefore, using Taylor-Lagrange formula, for any ¢ € [0, 1], there exists 5, 0 < 8 < 1 such that

n—1 ok 5k on §n
7o) = Za—j<0)g+87,{<ﬂ5)m (24)
k=
o b
= @) >0 (25)

This establishes that for any § < §; and any 0 € (0 — a, 09 + @), %i;(ﬁ, d) > 0. Thus for a fixed
d € [0,61], the function z*(#,0) of 0 is increasing over (6o — @, 09, + &) and cannot vanish more
than once over this interval. Using the same reasoning, we can establish that z*(6,0) is decreas-
ing over the intervals (69;_1 — «, #9;_1 + @) and cannot vanish more than once in each of them either.

2. From condition (ii) of Theorem 1, when 6 remains in J, 3;5,: (0,0) does not vanish. As J is
compact, | e Jn (0,0) ‘ admits a positive lower bound over J, that we denote by m

.{8
m = min

n *

oo

(0, O)‘,HGJ} > 0.

From the uniform continuity of 2-2" a " " (6, 6) over the compact set J x [0, 6], there exists dz, 0 < do < &;
such that for any § € [0, 2] and any 6 € J,

thus
T g 5l > (26)
oo™

We can apply again Taylor-Lagrange relation. To keep the same notation, f(J) denotes now z*(6, d)
considered as a function of ¢ for a fixed value of # € J. From condition (i) we get that equation
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(22) is satisfied and from (26) that %(5) does not vanish over [0,d2] and thus keeps a constant
sign over this interval. Equation (23) (or its counterpart gn—ff(&) < 0) is thus satisfied over [0, d2].
We can reuse (24) and (25) (replacing > by < if %(5) < 0) to conclude that z*(0,d) does not

vanish over [0, d2] and has the same sign as %—“;(0, 0).

If we now consider a fixed § < do and if we recall that ng (0,0) changes sign between two

subintervals constituting J, we can conclude that z*(6,d) vanishes ezactly once over each (6; —
a,0; + a), 1 <[ < 2m, defining a stable equilibrium configuration in each (09 — «, 6y + «),
1 <1 < m. As o can be chosen as small as desired as ¢ tends toward 0, the stable equilibrium
configurations converge toward (z*(0,0),y*(02;,0),02;) since z* and y* are continuous. O

Theorem 1 transforms the problem of determining the sign of z*(, ¢) to the problem of determining
the sign of the first non-uniformly zero %}—f(@, 0) (n > 0). In the following section, we will devise
ak *
ooF
of the radial field V' at (0,0). But first, let us apply the result of Theorem 1 in the simple cases

an algorithm that computes the successive expressions of (0,0) w.r.t. the partial derivatives

where n = 0 and n = 1. We will see that if the pivot point and the center of mass of a part are
distinct, the part can be uniquely positioned by a radial-constant field. If the pivot point and the
center of mass are the same, an additional condition ensures that the part has exactly two stable
equilibrium configurations.

7.2 TUnique Stable Equilibrium Configuration

The simplest application of Theorem 1 arises when n = 0. In this case, we do not need to
compute any partial derivative of z* w.r.t. 4. Indeed, from (18), we get

z*(0,0) = cos 80X, — sin Y.

Thus z* verifies the conditions of Theorem 1 with n = 0 iff (Xo,Yy) # (0,0). That is if the
pivot point is distinct from the center of mass. Under this condition, we can rewrite (X, Yy) =
(Rcos ¢, Rsiny), with R > 0 and ¢ two constants, and get

z*(0,0) = Rcos(0 + ¢).
We can thus apply Theorem 1 to get the following corollary.

Corollary 1. If the pivot point P and the center of mass G are different, that is (Xo,Yo) # (0,0),
then for small & the part has a unique equilibrium configuration. When 6 tends toward 0, the pivot
point gets closer to the origin and the direction PG aligns with the constant force field.

7.3 Two Stable Equilibrium Configurations

If the pivot point is the same as the center of mass (Xy, Yp) = (0,0), Theorem 1 cannot be applied
with n = 0. This situation happens for symmetric parts, like rectangles and regular polygons for
instance. We need thus to get an expression of %. For that we use the implicit representation of
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X* and Y*. Since X* and Y* minimize U for fixed 6 and ¢,

8U * * _
a—X(X (07 5)1 Y (97 5); 0; 6) - Oa
aU * * _
Using the expression (17) of U, we can rewrite these equations as
ov , ., . X B
8—X(X (0,0),Y*(0,0)) + 6|S|sind = 0,
ov , . .
—(X7(0,0),Y*(0,0)) +0|S|cos§ = 0.
oY
Differentiating these expressions w.r.t. § and omitting variables in the functions leads to
0’V oX* 0%V oYy™*
% % * * . — 2
—8X2(X ,Y™) Y +78X6Y(X ,Y™) 5 +|S]|siné 0, (27)
o’V ox* 0%V ay™
Y — (X", Y 6 = 0. 2
axay X Y ) g5+ gy (XY ) g H 1Sl eos 0 (28)

Now, taking § = 0, by hypothesis, X* = 0, Y* = 0 and we can recognize the Hessian of V at (0, 0)
in the above equations:

axX* :
W(0,0) sin @ _ 9
Hess V(0,0) ( 83:5* (6,0) > + 9] ( 050 0. (29)

To make notation more compact, let us denote by R, the rotation matrix of angle 1.

Let us recall that the Hessian of V(0,0) is symmetric and positive definite. For this reason, it
is diagonalizable, i.e., there exists a rotation matrix R, and two positive eigenvalues 1/, 1/Az
such that A\1 < X9 and

+ 0
Hess V(0,0) = R_y, ( A01 ) ) Ry. (30)

X2

Then from (29)
oX* .
A1 0 —|S|siné

= R_ . 2
R¢< 0 Ag)Rw(—|S|c059> (32)

Using rotation matrix notation, (18) and (19) yield

az* ax*

aayd* :Re 86)5'5* 9

04 a9

ox* :

=5 (0,0) _ R A1 0 R —|S|sin@
(%% (0,0)) P00 x )T —ISleost )

and (32) leads to
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y ™
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[ equilibrium configuration
1" reference configuration

Figure 9: A rectangle put in the radial constant field rotates to align its long edges with the constant
component of the field.

Expanding the first line of this latest equation gives the following expression

or*
00

1 .
(8,0) = 51S1(%2 — M) sin(2(6 + ). (33)
From this expression, we can deduce the following proposition.

Proposition 8. If the pivot point P and the center of mass G are the same and if Hess V(0,0)
has two different eigenvalues, then the part has two stable equilibrium configurations for small §.
In these configurations, the axis of the part coinciding in configuration qo with the x-axis aligns
with the eigenvector of Hess V (0,0) of larger eigenvalue.

Example Let us consider the rectangle defined by the following domain S = [-2,2] x [—1, 1] and
described in Figure 9. Because of the symmetries, both the center of mass and the pivot point are
located at the center of the rectangle. Let us notice that for polygonal parts, the partial derivatives
of V' can be computed exactly. We will show how to compute these derivatives later in the paper.
For the rectangle of Figure 9 we find

V(0,0) = Sargsinhl ~ 3.85,
2

axav (0,0) = 0,

g3(0,0) = 4argsinh2 ~ 5.77.

The Hessian is already in diagonal form. The larger eigenvalue is %(0,0) and the associated
eigenvectors are along the y-axis. Thus, for small §, the small side of the rectangle aligns with the
Z-axis.

Notice that the above rectangle is uniquely positioned up to symmetry under the radial constant
field. Of course, there might exist non symmetric parts with the same center of mass and pivot

point. These parts cannot be positioned uniquely by the radial-constant field. Let us point out
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that some symmetric parts give rise to a Hessian with one double eigenvalue. For instance, it can
easily be established that regular polygons have this property. For such parts, Proposition 8 fails to
provide a result since 2% (9 0) is uniformly 0. Thus, we need to compute further partial derivatives
of z* in order to use Theorem 1.

7.4 Algorithm to Compute All Stable Equilibrium Configurations

In this section, we consider a part with the same center of mass and pivot point. Moreover,
we assume that the Hessian of V' for this part has one double eigenvalue that we denote 1/X. The
goal of this section is to devise an algorithm that computes an expression of the successive partial

derivatives a; 65,”: (0,0) of the equilibrium curve. Once we find the first order n for which aa" 3+ (0,0)

is not uniformly zero, we can use Theorem 1 to determine the number and location of the local
minima of the lifted potential field for small §. We describe now the main steps of this method.
First of all, differentiating (18) n times with respect to d, we get
o"z* " X* ., 0"Y*
557 ——(0,90) = cos@—aén (0,0) — smﬁ—aén (0,0). (34)
Thus, to compute the successive expressions of _aan (;ﬁ* , we only need to find expressions of the partial
derivatives of X* and Y* w.r.t. 6. For that, we will use Equations (27) and (28), that we will
successively differentiate w.r.t. ¢ and evaluate for § = 0. Let us condensate these equations into

6X* :
ox* 0
Hess V(X*,Y™*) ( 2, ) +18] ( :;9 ) — 0, (35)

90

the following form

where X™*, Y* and their derivatives are evaluated at (6, d).
Since the pivot point and the center of mass are the same,

X*(6,0)=0, Y*(6,0)=0, X —(0,0) = % —(0,0) =0,
and since Hess V' has a double eigenvalue,
o’V o’V 1 0%V
axz 00 = 57200 = %+ 53y (0 =0

Using these equalities, let us evaluate (35) for § =0

10X*

Xaaa (6,0) +|S|sinfd = 0,

19Y*

/\8&5 (6,0) + |S|cosd = 0.

These equations give an expression of 2X" (0 0), and BY 5 (0,0).

90X (9,0) = —X|S|siné,
20,00 = —)S (36)
55~ (0, = —\|S|cosé.
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If we now differentiate (35) w.r.t. 8, we get

rx” 0 ax*
HeSS V(X*’Y*) 6[2?(}5/2* + — (HeSS V(X*’Y*)) aayt.s* = 0, (37)
042 90 96
where
BV * * B3V * * *
O (Hess V(X*,Y*) = ( oY) e ) ) o
85 6X28Y(X Y ) 9XaY?2 (X 7Y ) o)
3V * * 3V * % %
+ a)gggY(X ’Y ) gg(v@y2 7Y ) oY )
axare (X5 Y") Gys (XY, Y™) )

These equations may seem complex, but we only need to focus on their overall form to notice that

1. the second term of the left-hand side of (37) is an expression including the third-order partial
derivatives of V at (X*(0,0),Y™*(0,0)) as well as (9 0) and ag;* (0,0);

2. evaluated at 6 = 0, the first term of (37) becomes
2 v o*
L G001

Thus, aagg* (6,0) nd %{; (0,0) can be expressed w.r.t. the third- order partial derivatives of V
evaluated at (0,0), 2 (0 0) and agg (0,0) only. Using (36) to replace (9 0) and ay 5(0,0), w

get an expression of 602 (9, 0) w.r.t. 6 and the partial derivatives of V' up to order 3 evaluated at
(0,0).

Differentiating again (37) and repeating these operations, we would obtain expressions of the

successive a 2 “(9,0) and 85 5Yn* (0,0) w.r.t. the partial derivatives of V up to order n + 1, evaluated
at (0,0). Table 1 presents an algorithm performing these computations.

Remark: It can be checked iteratively that agéxn (0,0) and BgJYn (0 0) are trigonometric poly-

0 < I < k. Therefore, 2 60n “(6,0) can either be unlformly ZET0 Over S1 or Vanlsh at a ﬁnite number

nomials in 4, the coeﬂi(:ients of which are sum of products of 5

of points. Among these points, those where the slope 2 aaa(sn (0 0) is positive are stable equilibrium
orientations, according to Theorem 1.

The above computations express the successive derivatives %(9, 0) using the partial derivatives
of the lifted radial potential field V' at (0,0). In the general case, we do not have closed forms of
these partial derivatives. The next section addresses this issue.

7.5 Computation of the Partial Derivatives of V/

Again, in this section, we consider symmetric parts: P = G. We show how to compute the
partial derivatives of V', a task which at first approach seems very difficult.
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minima < ()

If (5%(0,0) #0) or (3%(0,0) # 0)
write ‘‘Pivot point and center of mass distinct.’’;
exit;

endif;

If (W(O 0) WT(O 0)) or (aXBY(O 0) # 0)
1 < diagonalize Hess V(0,0) (equation (30))
minima < {(0,0,—v), (0,0,—¢ +7)};
exit;

endif;

A 2Y(0,0);

X[1] < —A|S|sind;

Y[1] < —\|S]|cos;

n <+ 1;

z[1] < cos @ X[1] — sin@ Y[1];

expr[l] + equation (35);

while (z[n]=0) do
n+<n+1;
expr[n| + differentiate(expr|n —1],8);
equation < evaluate(ezpr[n],é = O)
(X[n],Y[n]) < solve(equation,(Z 85” “(0,0), 8(;5};* (6,0)));
z[n] < cos @ X [n] —sinfY [n];
zg  differentiate(z[n],6);

od;

(01,...,0m) < solve(z[n] =0, 0);
for each ¢ between 1 and m do
If evaluate(zy,0 =06;) >0
minima < minima U {(0,0,0;)}
endif
od;

Table 1: Algorithm that computes the local minima of the lifted radial-constant field Us for small §. If
the pivot point and the center of mass are distinct, we know the equilibrium configuration is unique but we
cannot express it.
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Non-Polygonal Parts For a general part, the only way to compute the partial derivatives of V'
is numerically. For that, there are two methods. The first one consists in evaluating by numerical
integration V(X,Y) for several values of (X,Y) around (0, 0) and then in computing the successive
partial derivatives of V' by finite difference: g—)‘(/(X,Y) = 5=(V(X +h,Y) = V(X = h,Y)). The
main drawback of this numerical method is that precision decreases dramatically with the order of
differentiation.

The second method is more elaborate but more accurate. If the pivot point P = G is outside
the part, the origin is outside S and v is smooth over S. Thus, the partial derivatives of V of
any order commute with the integral and expressions (10-14) can be generalized to all the other
partial derivatives of V. The best way to compute these partial derivatives is then to integrate
numerically the partial derivatives of v over S. If the pivot point is on the boundary of the part,
there is nothing we can do since the partial derivatives are not defined. If the pivot point is inside
the part, V is smooth but the partial derivatives of v of order 3 or more are not integrable over S
and expressions (10-14) cannot be generalized. We can overcome this difficulty by using the same
idea as in the proof of Proposition 2 presented in the Appendix. The idea consists in approximating
v with a field vp, such that

1. h > 0 is such that the disc Dp(0,0) is completely inside int(.S),
2. vp(r) = o(r) if ||r|| > h and
3. vp(r) is of class C¥.

For that, we define vy, as a function of ||r||: vy(r) = g(||r||), where g(r) = r if r > h. For r < h, we
define f(r) as an even polynomial:

k

g(r) = ap + agr? + ... + agpr®*  r < h.

Then we determine the coefficients ay, ..., asr of the polynomial by solving the following linear
system of order k + 1:

gh) = h
g(h) =1
g"(h) = 0
g B
) = o.

Thus, with these constraints, g is of class C* over (0,+oc) and by defining v, (r) = g(||r||), we
preserve the continuity of the partial derivatives up to order k at the boundary ||r|| = h. Moreover,
on Dy (0,0), g(||r]|]) contains only even powers of |r|. g(||r|]) is in fact a polynomial function of
|||? = €2 + n? and is thus smooth over Dy (0,0), even at the origin.
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If we denote V}, the lifted potential field associated to vp, and as long as Dp(—X,—Y) remains
completely in S,

V) SROGY) = [ eCREY ) w46 Y+ s

/ u(€,n) — vp (€, n)dédn.
Dh(0,0)

Thus for h small enough, V(X,Y) — V,(X,Y) is constant in a neighborhood of (0,0). Therefore
the partial derivatives of V' are the same as the partial derivatives of V}, and the partial derivatives
of Vj, up to order k commute with the integral since vy, is of class C¥. Therefore,

akV 8k’l)h

W(X’Y) = /s W(XJrf,YJrn)d&dn, 0<p<k.

These partial derivatives can be computed by integrating numerically the partial derivatives of
vp. The numerical error comes from the integration and does not increase with the order of
differentiation.

Polygonal Parts If the part is polygonal, the partial derivatives of V' can be computed analyt-
ically. We explain here how.
Once we have an expression of g—g and g—}/, the higher order derivatives follow by formal deriva-

tion. By partitioning the polygon into stripes (see Figure 10), g—)‘g can be decomposed into a sum

m praintb
oX no Jaon+bo \/(X +&)?+ (Y +1n)

where &€ = agn + bg and £ = a1n + b1 are the equations of the sides of each stripe. Thanks to

of terms of the form

Figure 10: Computation of g—; by partitioning the polygonal part into stripes.

our system of coordinates (X,Y,0), the integrand of the above integral is the partial derivative of
VX + 82+ (Y +1)? wat. X but also w.r.t. &, so that each of these integral can be rewritten as
follows:

m

VX +ain+01)2+ (Y +10)2 = /(X +aon + bo)2 + (Y + n)2dn.
7o
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Using the appropriate change of variables, the above integrals can be computed exactly and ex-
pressed with the coordinates of the vertices of the polygon. g—¥ is computed the same way, by

switching the role of ¢ and 7.

8 Examples

We have implemented the algorithm presented in Table 1 using Maple and we have applied it to
a number of examples. In this section we compute the stable equilibrium configurations of several
parts, focusing our attention on regular polygons. We report the relevant values of the partial
~(6,0).

derivatives of V and the successive 2 5 5k

Equilateral Triangle

aX2 7(0,0) = aTV(O 0) = Jargsinh(v/3) axay (0,0)=0
g;V:; (0,0) = % 3 argsmh(ﬁ) 6)6(32‘51/ (0,0) =0
S0a(0,0) = -3 Jargeinh(vE)  5(0,0) =0

and
2% A B
or* (0 0) 0, 8_“;(0’0):§args1n}.1(\/§) \/g

Since, the coefficient in front of cos(36) is positive, for small §, the triangle has 3 equilibrium

0s(36).

positions corresponding to the orientations 7 /2 + 2kw/3, k = 1,2 or 3.

Square
2—;‘/2(0,0) = g—i/vz((),O) = 2v/2argsinh(1) 8X6Y (0,0) =0
5%5(0,0) = 58355 (0,0) = 58572(0,0) = 57%(0,0) = 0
5x7(0,0) = 4, 5%557(0,0) = S22V (0,0) = 0
SOV (0,0) =0, 2%(0,0) = —4
and
% (0,00=0, 55(0,00=0, FE(0,0) = garfipoe sin(40).

The square has thus 4 equilibrium configurations corresponding to 6 = k7 /2, k = 1,2,3 or 4, for
small 4.

Pentagon The expressions of the partial derivatives of V(X,Y) for a regular pentagon are very
long. We will only report the final result, namely

99,00 =0 22(0,00=0 22(6,0) =

otz*
004 (

0,0) = —Xcos(56),

3125(3+v/5) 2 6X5 ¥.(0,0)
51227(0,0)5
the regular pentagon has five stable equilibrium configurations about 7/10+2k7/5 ,k = 0,1,2,3,4.

where A\ = > 0. From this latter expression, we can conclude that for small §,
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l constant field

Figure 11: Equilibrium configurations of regular polygons subjected to the combination of a unit radial
field and a small constant field.

Interpretation Although the expressions of the partial derivatives of z* w.r.t. the partial deriva-
tives of V are very complex, they simplify dramatically in the case of regular polygons. We checked
up to order n = 6 vertices and we noticed that x* has the following properties:

1. the first non-uniformly zero expression 35k “(0,0) is for k =n — 1 and

2. a;(snl "~ (0,0) can be simplified to:

anl*

Sen=T (0,0) = A1 cos(nf + Ao),

where A\; and )y are constants.

The above results suggest that regular polygons can be uniquely positioned up to symmetry using
a combination of a unit radial field and a small constant field. The equilibrium configurations
seem to be those for which an edge of the polygon crosses perpendicularly the negative y-axis (see
Figure 11).

9 Discussion

This paper proves that the combination of a unit radial and a constant force field orients non-
symmetric parts to a single stable equilibrium and describes an algorithm to compute all stable
configurations for symmetric parts. Our work provides further evidence that programmable force
fields are a powerful tool for part manipulation as it has been suggested in [19, 15, 16]. To our
knowledge this is the first work that provides an exhaustive analysis and computation of all stable
equilibrium configurations of any part under a single universal force field. Our work can lead to the
design of a new generation of efficient, open-loop parts feeders that can bring a part to a desired
orientation from any initial orientation without the need of sensing or a clock.

Practical implementations of force fields are currently limited. While waiting for the technology
to yield better devices, we find it worthwhile to study what programmable force fields can and what
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they can not do. It is our belief that the theory of programmable force fields is at a very early
stage. We hope that as the field matures, we will see an increasing number of papers addressing
the geometric, algorithmic and implementation problems that emerge in this area. We only point
out a few open issues below.

Issues related to the analysis in this paper We showed through the examples presented
in Section 8 that some symmetric parts can be oriented up to symmetry with the combination of
a unit radial and a constant force field. One question we have not been able to answer is if the
above field can orient any symmetric part upto geometric symmetry. Our examples in Section 8
suggest that this might be the case. It would also help the analysis and our understanding of the
problem if properties of the part are more closely related to the proposed field. For example, it
is conjectured that the eigenvalues of the Hessian studies in Section 6 are related to the axes of
inertia of the part. Another issue is that our results are asymptotic for small 6. The study of the
same field for general § is an open problem.

Efficient Computation of the Pivot Point Although it is easy to see that the pivot point
can be computed numerically by solving a system of equations when the part is under the influence
of a unit radial field, there is no analytical expression for coordinates of the pivot point of a part.
It is an open problem to determine if such an expression exists. In the case an analytic expression
can not be found, the efficient numerical computation of the pivot point is of interest.

Implementation of the Unit Radial - Constant Field The implementation of the combi-
nation of a unit radial and a constant field is an extremely challenging task [11, 13]. In Section 2
we have outlined device designs and technologies that can implement programmable force fields.
MEMS technology allows the manufacturing of a surface with potentially thousands or even millions
of microscopic actuators each of them capable of generating a force in a specific direction. Hence,
it is an attractive technology for implementing force fields that require high spatial resolution such
as the field proposed in this paper, although alternative designs may be possible (e.g., [51]). A
prototype unidirectional array using MEMS technology has been implemented by Bohringer et al.
[7]. Rearranging the actuators in a circular pattern will generate a unit radial field. Note that
this array is enough to implement the combined field: the idea is to tilt the array to add a gravity
component that will implement the small constant field. Under some simplifying assumptions the
magnitude of the constant field equals the tangent of the angle at which the planar array has been
tilted [13]. This simple observation can greatly facilitate the implementation of the proposed force
field and it has been one of our motivations for focusing our work on the combined unit radial and
constant field.

Modeling and rate of convergence A question that arises in the context of this paper, as it
arises in the context of all previous published work on this topic [19, 15, 16, 34, 13], is the rate of
convergence to the equilibrium configuration. This is an open question. Clearly, the value of § and
the distance of the pivot point and the center of mass of the part affect convergence. Note that

34



the rate of convergence is intrinsically linked to the partial derivatives of the potential field of the
implemented field (a steeper slope implies a stronger motive force). However, a missing component
for a thorough analysis is a good friction and dynamics model for a device that can implement the
programmable force field.

Discretization issues As mentioned above, one very important question is the practical imple-
mentation of the proposed field. Clearly, it will take a long time before devices that are capable
of implementing general force fields are available. It is conceivable that MEMS technology will
become so advanced that a huge number of actuators would be fitted in a wafer, or that air jet
technology will become so accurate that it could deliver almost a continuous force field. In that
case, if the part is relatively big, one may assume that the implemented field is a continuous field.
Waiting for such a technology however, it is worth studying discretization issues. Recent research
described in [45, 44] studies several issues arising with a discretized implementation of force fields
using small mechanical motors.

Other fields that can achieve a single equilibrium for parts The unit radial-constant
field was inspired by work on universal grippers and by the relative ease of its implementation (see
discussion under the implementation paragraph of this section). Another interesting direction of
research is to search for force fields, other than the one proposed in this paper, that can achieve
a single equilibrium configuration for most parts and are simpler or easier to implement with a
specified technology. An even more interesting problem would be to find a single force field that
can position and orient uniquely a set of different parts.

Parallelism So far we have considered only the equilibria of one part in a force field. But what
happens if two parts are placed into the field simultaneously? It is possible that the parts will settle
in predictable configurations. This effect could be exploited for automated assembly. When parts
are initially placed far enough apart, it may be possible to implement several unit radial-constant
fields next to each other to achieve parallel positioning. This issue is particularly interesting since
there is no overhead for parallelism in such a device, as no communication and control is required.
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Table of Symbols

E subset of R?

int(E) interior of E

OF boundary of E

E‘ set of points at a distance not more than d from E
C=R?xS! configuration space of a part in the plane

q0 reference configuration of a part

S surface occupied by the part in configuration qq
G center of mass of the part

P pivot point of the part

q=(z,y,0) configuration of the part

Pq rigid-body transformation associated to q
r=(&n) point in the plane

Eq = pq(E) image of the subset E by ¢q

de distance in the configuration space

u(&,n) potential field in the plane

f(&,n force field in the plane

U(aq) potential field over C'S

F(q) resultant force of a force field over a part

M(q) moment of a force field over a part

v(&,n) unit-radial potential field

\%4 potential field over C associated to v

(X,Y,0) system of coordinates over C

(Xo,Yp) unique minimum of V

cm subset of configurations for which (0,0) € int(Sq)
cout subset of configurations for which (0,0) ¢ Sq
Cbound subset of configurations for which (0,0) € 854
det determinant operator

tr trace operator

Hess Hessian operator

0 magnitude of the constant field

(z*(6.6),y"(6,0))
(X*(0,0),Y*(0,9))
Us, Ug s

equilibrium curve in the (z,y, #) system of coordinates
equilibrium curve in the (X,Y, ) system of coordinates
radial-constant field over C, the variables in subscript
being considered as constant
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Appendix: Proof of Proposition 2

9?2V
t X2
Using a similar proof, one can establish that V' and the expressions of the other partial derivatives

are C2.

According to Proposition 1, we already have

We will only prove here tha exists everywhere and is continuous and we will establish (12).

52% ov
SV = [ G+ ey + e,
and we want to get
PV xvy= [ TVx 1 ey +ned (38)
aX2 5 0¢2 el

The standard results of theory of integration make the differentiation of 5z 9y (X +&,Y +n) under
the integral possible if three conditions are met

1. g—g(X +&,Y + ) is integrable over S for any (X,Y) € K, where K C R? is a compact set,

852 S(X +&,Y + 1) exists for any (X,Y) € K and any (§,7n) €

3. there exists a positive integrable function g(£,n) such that
862 (X + &, Y+77)‘ < g(&,n) for any (X,Y) € K and any (&¢,7) € S

For the unit radial field, conditions 2 and 3 are not met because of the singularity of v at the origin:
852 2(X 4+ £,Y + 1) does not exist if X = —¢ and Y = —n and cannot be bounded by a integrable
function independent of (X,Y).

To avoid the singularity of the field at the origin, we define a set of C? potential fields equal to v(r)
outside the disc Dp(0,0) of radius h centered at the origin. Let us denote r = (£,7). Then

op(r) = o(r) =/ +n? if [|r]| > A (39)

on(r) = —gllrl*+ g lel? + % i el <h

and we define the corresponding lifted potential fields
VX, Y) = [ on(X &Y + e
5

As vy, is C? over the compact set S x K, its partial derivatives up to order 2 are continuous and
bounded over this set. Conditions 1,2,3 defined above are thus satisfied, V}, is C? and we can write

0? Vi 82

Given a configuration of the part, there are three different cases.

1. The center of the radial field is outside the domain of integration S: (—X,-Y) & S,

42



2. the center of the radial field is inside S: (=X, -Y) € int(S) or
3. the center of the field is on the boundary of S: (-X,-Y) € 9S.

In the first case, for h sufficiently small, the disc Dp(—X,—Y) where the fields v and v, are
different is completely outside the domain of integration thus V(X,Y) = V,(X,Y). In the second
case, for h small enough, the disc Dp(—X,—Y") is completely inside S and the difference V(X,Y) —
Vi(X,Y) does not depend on (X,Y’). Indeed,

V(X,Y) - Va(X,Y) = /D( Ly PEY 1) (X6 Y
- / w(é, ) — vn(€, m)dédn.
Dy (0,0)

And this equality holds for any (X,Y’) such that Dy(—X, —Y) remains completely in S. Therefore,
in cases 1 and 2, for h small enough,

o0*v 0V},
X, Y
ax2 XY = 552
To establish (38) outside 05, we only need to prove that for any (X,Y’) such that (—X,-Y) ¢ 95,

(X,Y).

. 0%vp, 0%
lim "X 4+ €Y +n)dedny = W

vl T — (X + &Y +n)dédn. (41)

For (X,Y) fixed, 3650211 (X +£,Y +n) converges toward 2 652 2(X 4+ &, Y +n) point-wise almost every-

where. We need to bound 835’2" by a an integrable function g(£,n) independent of A in order to use

Lebesgue’s dominated convergence theorem. For that, we consider a point r = (£,7) and we look
2

at aa—é’fh(r) when h varies. There are two different cases: h < ||r|| and h > ||r]|.

If i < lr]],

0%y, B n? 1
o¢? (r)‘ B Il

If A > ||r||, differentiating Expression (39) of v(r), we get

and thus,

Iell> |Ie)f? 3||r||2 3
352(1‘)‘— on T =g =3l

since + < ﬁ Therefore, ‘ng(r)‘ is bounded by max(ﬁ, 2|lr|]) which is integrable and does

not depend on h. Thus, Lebesgue’s dominated convergence theorem implies (41) and we have
established (38).
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We have now to show that 2 675 is continuous. For that, let us notice that

o’V 0*Vy 0%*v
—(X,Y X, V) < , déd
S -Gghoen)| < [ 1S - S| dedn
0%v 0%y,
< / (E,n)‘+/ (&n)‘
D,(0,0) ¢ Dy (0,0) 062
and both integrals tend toward 0 with h: the first one because g—g is integrable, the second one
because 38—2;2’1(5 ,77)‘ is bounded by an integrable function independent of h. Thus the functions
% converge uniformly toward % as h tends toward 0. Since they are continuous, so is %

everywhere, even across the boundary of S. The same reasoning can be applied to the other partial
derivatives of V, up to order 2, to conclude that V is of class C? over R? and that its partial
derivatives are expressed by (10-14).
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