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Positioning Symmetric and Non-Symmetric Parts using
Radial and Constant Force Fields
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Part positioning is an important task in manufactur-
ing. New approaches have been proposed to perform
this task using force fields implemented on an active
surface. A part placed on such a surface is subjected to
a resultant force and torque and moves toward a sta-
ble equilibrium configuration. Such force fields can be
implemented using MEMS. In this paper, we study the
combination of a unit radial field with a small constant
force field. In prior work we proved that such a combi-
nation can uniquely position a class of non-symmetric
parts. In this paper, we propose a more complete mod-
eling of this combination which allows us to devise a
method to determine all the equilibrium configurations
of a part in the above force fields. This method works
for both symmetric and non-symmetric parts. Beyond
the method, this paper reports a comprehensive study of
the action of radial and constant potential fields over
parts with an original characterization of local minima
of the lifted potential field.

1 Introduction

During manufacturing, parts typically stored in boxes
have to be manipulated and oriented before assembly.
This task is critical in manufacturing since it strongly
affects the productivity of the assembly line. Orien-
tation has been traditionally performed by vibratory
bowl feeders. However, these devices are designed for
a given part and need to be modified if the shape of
the part changes.

Recent work has investigated alternative ways of ori-
enting parts, and emphasis has been placed on simple
programmable devices [1, 6, 9, 15]. Part positioning
without sensing has become very popular over the past
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few years since it is easy to implement and the methods
proposed can be very robust [1, 3, 6, 7, 8, 9, 16]. Our
work brings new contributions in this domain.

One of the pioneering papers in this area, [9], pro-
posed to orient a polygonal part by a sequence of
squeezes performed by two parallel jaw grippers. Given
a polygonal part, the paper described an algorithm to
compute the best sequence of squeezes that uniquely
orients the convex hull of the part no matter what the
initial configuration is. In [16], the parts are on a con-
veyor belt and rotate by contact with passive fences.

Another approach is based on force fields imple-
mented in an horizontal plane [6, 13]. A part lying
on the field is subjected to a resultant force and torque
that move the part toward a stable equilibrium con-
figuration if one exists. A series of papers (see [4] for
detailed references) established the fundamentals for
part manipulation using force fields. Current technol-
ogy permits the implementation of certain force fields
in the microscale with MEMS actuators [6] or air jets
[2] and in the macroscale using mechanical devices [14].
Vibrating plates can also be used to produce certain
force fields in the plane [3].

In work which is summarized in [4, 6] the properties
of force fields that are suitable for sensorless manipula-
tion were analyzed and manipulation strategies were
proposed. Several fields were investigated including
the squeeze, radial, and inertial fields and combina-
tions thereof. Notably the algorithm of [9] still applies
when the jaw grippers are replaced by squeeze force
fields. Later work [10] introduced the elliptic potential
field which gave rise to two stable equilibria for non
symmetric parts.



Complexity and Uniqueness of Positioning

There are two main issues when positioning! parts us-
ing force fields. The first one is the number of basic
operations, (i.e. , number of force fields used) and the
second one is the number of distinct positions that the
strategy yields. Both issues have been addressed previ-
ously and work has been done both on finding shorter
sequences of operations [6] and on finding a unique op-
eration that positions a part. In [10], a quadratic po-
tential field is used to position parts. Any part with
distinct principal moments of inertia has exactly two
stable equilibrium configurations in these fields. The
other parts have undefined orientation. Addressing the
above issues at the same time would consist in finding
a single field that uniquely positions a part. It was
conjectured in [6] that the combination of a unit ra-
dial field with a constant force field would fulfill this
task. In [5], we proved that this conjecture is true un-
der the condition that when the part is subjected to
the unit radial field only, the center of mass of the part
in equilibrium is not at the origin of the field. Thus,
for almost any non-symmetric part, there exists a force
field that uniquely positions this part.

Contributions and Organization of the Paper

Symmetric parts like a rectangle or regular polygons for
instance do not fulfill the above condition: when placed
in a unit radial field, at equilibrium, the center of mass
of the part will coincide with the origin of the unit ra-
dial field, due to symmetry. The goal of this paper is to
determine all the stable equilibrium configurations of a
general part, symmetric or not, subjected to the combi-
nation of a unit radial field with a small constant field.
There are two main contributions in this paper. The
first one is a characterization of the stable equilibrium
configurations of a part using a general modeling based
on the curve of translational equilibria for fixed orien-
tations and its partial derivatives. This modeling is a
generalization of results previously published [5, 12].
The second contribution is a method to compute the
above mentioned partial derivatives and an algorithm

'Orienting a part consists in specifying the orientation
of the part. Positioning a part consists in specifying the
position and orientation.

that determines all the equilibrium configurations of a
given part.

This paper is organized as follows. In Section 2, we
give some notation and definitions. In Section 3, we
first define the unit radial field that we then combine
with a constant field. We define the equilibrium curve
as the locus of the translational equilibria for fixed ori-
entation. After pointing out the smoothness of this
curve, we state the central result of the paper that ex-
presses the stable equilibrium configurations of a part
w.r.t. the equilibrium curve and its partial derivatives.
Section 4 first describes the practical computations of
these partial derivatives. An algorithm to determine all
the stable equilibrium configurations of a part is then
given. Finally, an example of positioning of a symmet-
ric part is presented. We conclude in Section 5.

2 Notation and Definitions

This section puts forward the notation and definitions
used in the paper. We first define the action of a force
field over a part and the notion of a stable equilibrium
configuration in this context. Then we outline some
properties of force fields deriving from a potential func-
tion. Most of these definitions have been introduced
in [4].

If E is a set, we denote by int(E) and OF the interior
and boundary of E. Throughout the paper, r denotes
a point of the plane of coordinates (£,7n) in a frame
attached to the plane. We consider a part in the plane
occupying surface S with center of mass G at (0,0)
in a reference configuration qo. We suppose that S
is a compact set and that its boundary 0S is a zero-
measure subset of the plane. The configuration space
of the part is C = R?xS', where S' is the unit circle. A
configuration q = (z,y,0) € C corresponds to a rigid-
body transformation ¢q in the plane transforming r =

(§,m) into

[ x+Ecosf —nsinf
Palr) = ( y +&sinf + ncosb )

We denote by Sq the subset occupied by the part in
configuration q.

When the part is placed on a force field f(r), the
resultant force and torque it is subjected to are the



following;:

F(a) = Lf@m (1)
q

M@ = [ @-rxtwa Q)
5q

where rg = (z,y) is the position of the center of mass
G, when the part is at configuration q.

We say that q is an equilibrium configuration if the
resultant force and torque vanish at q. Moreover, an
equilibrium configuration q is said to be stable if, sub-
jected to a small perturbation, the part stays in the
neighborhood of q.

Potential Fields The class of force fields deriving
from a potential function are very helpful in mechanics
and electrostatics since the equilibrium configurations
of a point-particle subjected to such a field are exactly
the local minima of the potential field. This property
extends naturally for “reasonable” force fields from the
plane to the configuration space via the notion of lifted
potential field [4].

Definition 1 (Lifted Potential Field)
Let f(r) be a force field in the plane deriving from
a potential function w, i.e. , f(r) = —Vu(r). The

function
U@ = [ ul)ir= [ ulae)is
Sq S
over C is called the lifted potential field induced by wu.

The lifted potential field U(q) is thus defined by in-
tegrating the value of the plane potential field over the
surface Sq occupied by the part in configuration q.
In [6] some properties of the lifted potential field are
established. The most interesting among these proper-
ties is that the partial derivatives of the lifted potential
field w.r.t. z, y and 6 are exactly the opposite of re-
spectively the coordinates of the resultant force and
the resultant torque.

%%m = —Fy(q)
W = -F

By

ou

5ﬁ® —M(q)

The main consequence of these equalities is that sta-
ble equilibrium configurations are equivalent to local
minima of the lifted potential. For this reason, we fo-
cus our attention in the following sections on the local
minima of the lifted potential field induced by radial
and constant fields.

3 Radial and Constant Fields

In this section we study the properties of combinations
of a unit radial force field with a small constant force
field. Both fields derive from a potential. We give a
method to determine the stable equilibrium configura-
tions (i.e. , local minima) of a part subjected to such
a combination in the general case. See also [5], were
some of the material below was originally developed.

3.1 Unit Radial Field

We call unit radial field the force field f(r) = — et~ This
field has constant magnitude, is oriented toward the
origin of the frame attached to the plane and derives
from the potential function

o(r) = lr[ = V& + 7 3)

v is clearly symmetric by rotation about the origin.
Thus if q' is obtained from q by a rotation about the
origin, the values of the lifted potential field at q and
q' are the same. To take fully advantage of this prop-
erty, we are going to use a new system of coordinates
(X,Y,0) for the configuration of the part, illustrated
in Figure 1 and defined by:

X =
Y =

xcosf + ysind
—zsinf + ycosd

Expressed in this system of coordinates, the lifted po-
tential field V corresponding to v depends only on X
and Y and can be written as follows:

V(X,Y,0) =/Sv(X+§,Y+n)d§dn )

Because of the independence on 8, we will consider V
as a function of (X,Y’) only. Notice that when 6 = 0,
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Figure 1: Parameterization of C with the system of coor-

dinates q = (X,Y,0). @q corresponds to a translation of
(X,Y) followed by a rotation of angle 6 about the origin.

X=zand Y =y. V(X,Y) = V(z,y,0) can thus
be considered as the lifted potential field of the part
in translation. This interpretation can be helpful to
understand some of the forthcoming developments.

Smoothness of V' In the following sections, we will
use a lot the partial derivatives of V. For this reason,
we state in this section the differentiability properties
of this function.

C is partitioned into three subsets. The configura-
tions for which the origin of the radial field is in the
interior of the part, the configuration for which the ori-
gin is outside the part and the configurations for which
the origin is on the boundary of the part. We denote
respectively C*", C°% and C?°“"? these subsets. To de-
cide in which of these subsets a configuration (X,Y,0)
lies, we need only to consider (X,Y) in the new system
of coordinates. (see Figure 3.1 for intuition):

qecn & (=X,-Y) €int(S)
qecout & (-X,-Y)¢S
qelurd & (-X,-Y)e€dS
As far as differentiability is concerned, V' has the fol-
lowing properties.

Proposition 2 (i) V is of class C™ over C'" and
over C°%,

i) V is of class C? over C and
(ii) f

(V) /s X HEY £t ()
%(X’Y) = /Sg—:;(X+£,Y+77)d§d77 6)
IV xy) = /sg%w +&Y +mdgdn - (7)
Iy xy) = /sg%a +EY +a)dgdn - (8)
g—avy(x, Y) = /s ai?n (X +&Y +n)dedn (9)

The classical results of integration theory, regarding
differentiating inside the integral cannot be applied as
such to the unit radial field because of the non differ-
entiability at the origin. The proof of this proposition
is based on a family vy, of approximations of v, C™ ev-
erywhere and equal to the radial field outside the disc
of radius h centered at the origin. We do not give here
the proof of this Proposition. This proof can be found
in [11].

It is interesting to notice that the lifted potential
field V' is C*° although v is not even differentiable. The
singularity of v at the origin affects the smoothness of
V only where the boundary of the part passes above
this singularity.

Minimum of V and Pivot Point Due to symme-
try, the unit radial field obviously cannot uniquely posi-
tion a part. However, for a fixed value of 6, any part in
translation has a unique stable equilibrium. This prop-
erty is a consequence of the Proposition refprop:posdef
below. This proposition was also given in [5]. It is re-
peated here for completeness. Notice that it provides a
different proof for the existence and uniqueness of the
pivot point defined below than the one given in [4].

Proposition 3 V wverifies the following properties:

(i) The Hessian of V Hess V(X,Y) is positive defi-
nite everywhere in R2,

(i) V has a unigque local minimum over R2.



Proof: As Hess V is a 2 by 2 matrix, (i) is equivalent
to

tr Hess V(X,Y) >0

XY 2
VX, Y) € R, det Hess V(X,Y) >0

where tr and det are respectively the trace and determi-
nant operators. According to (7-9) and (3), the second
order partial derivatives of V are

>V _ (Y +n)°

o (HY) = /S (X101 Tnp=idn

o°v _ (X +6)°

Gyz0Y) = /S (X107 r @ =i
_ov _ —(X 48 +n)

It is straightforward from these expressions that
2 2
tr Hess_ V = gx‘g + gy‘g_ is positive everywhere. The
determinant of the Hessian of V'

det Hess V(X,Y)

o’V 9’V o’V .,
<8X2 av? ~ laxay) ) V)
is the sum of two terms, each of which is a product

of two integrals over S. Replacing these products by
integrals over the Cartesian product S2 = S x S, we

get
</S f(&, n)dﬁdn) (/Sg(ﬁ,n)dédn> =

/Sz F(Ex,m)9(E2, 12)dErdm deadns

If we condense the notation as follows, X; = (X + &;),
Y: = (Y +n;) for i = 1,2, and omit d& dn déadns, we
have

det Hess V(X,Y) XiYy
’ S (XT +YP)P(XE +Y7)*

. X1Y1XoYs

S (Xl2 + Y12)3Q(X22 + Y22)3q
_ Y2 X5 — X1Y1XaYa
T Je (XFHYRPXE 4 YRR

In the first integral, (X1,Y1) and (X2, Y>) have a sym-
metric role and can be switched so that X2Y? can be
replaced by 1(X2Y? + X2Y}?) and

1 [ X}V9 + X3V —2X1 V1 XLV,
detHess V(X,Y) = iYs +X5Y 1Y1.X2Y5

2 Jo (X7 +YP)3H(XE +Y7)=

_ 1 (X1Ys — XoY7)?
T2 e (X HYP)PT(XS 4YS)P
> 0.

Thus Hess V is positive definite everywhere. This en-
sures us that if V' has a local minimum, it is unique.

Moreover, as v(r) tends toward infinity when ||r|| tends
toward infinity, V(X,Y) also tends toward infinity as
(X,Y) diverges. This property implies the existence of
a local minimum of V. 2

We denote by (Xo,Yp) the unique minimum of V.
The set of equilibrium configurations of the part under
the radial field is the following {(Xo,Ys,6),0 € S'}.
Let us express this curve in the standard system of
coordinates:

x = Xgcosf —Yysinf (10)

y = Xosinf+ Yy cosh (11)
The stable equilibrium configurations are obtained by
rotation of the part about the origin of the radial field.
The point of the part situated at the origin in these con-
figurations is called the pivot point and denoted P [6].
In the stable equilibrium configuration corresponding
to @ = 0 (remember that in this case, X =z, Y =y.),
the center of mass is translated to (Xo,Yp). Thus in
configuration qg, the pivot point is at (—Xg, —Yy) (see
Figure 2).

Figure 2: In a unit radial field, at the equilibrium con-
figuration corresponding to 6 = 0, the center of mass is at
(Xo,Y0).

3.2 Radial-Constant Field

The previous section established the existence and
uniqueness of the pivot point for a part subjected to
the unit radial field. In this section, we perturb the
radial field by adding a small constant field in order to
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Figure 3: Potential function of the combination of a unit
radial force field with a constant force field

break the symmetry. We are going to show that for
each fixed orientation € of the part, the corresponding
lifted potential field has a unique minimum in (X,Y").
When now 6 varies, the curve of these minima is C!
and C'* if the pivot point is not on the boundary of the
part. We call this curve the equilibrium curve. Then
we will give a characterization of the local minima of
the lifted potential using the equilibrium curve.

We consider now the following potential function in
the plane (Figure 3):
u(r) = v(r) + on

where v is the unit radial field and § is a positive con-
stant. The second term d7 corresponds to the constant
force field —0(0, 1). The lifted potential field for a given
value of § is expressed as follows in the (XY, 0) system
of coordinates:

Us(X,Y,0) = V(X,Y) +0]S| (sin@ X +cosf ¥) (12)

where |S| is the area of S. For clarity purposes, we
define the following functions

Uss(X,Y) =U(X,Y,0,6) = Us(X,Y,0)

where the variables we put in the subscript are consid-
ered constant.

Minimum of Usy and Equilibrium Curve The
second term of the right hand side of Expression (12)
is linear in (X,Y"). For this reason, Uy s has the same
second order partial derivatives as V' and Hess Uy s =
Hess V' is positive definite (Proposition 3). For any
fixed value of 6 and § < 1, u(r) tends toward infinity
with ||r||. Thus Uy s(X,Y’) tends toward infinity with
(X,Y) and Uy, has a unique local minimum. We de-
note by (X*(6,6),Y*(6,6)) this local minimum. We
can express it in the standard system of coordinates
by:

2*(0,5) =
y*(8,0) =

cosf X*(6,0) —sinf Y*(6,0) (13)
sinf X*(6,0) + cosf Y*(6,6) (14)

For each value of § < 1, these local minima define a
curve of parameter 6 that we call equilibrium curve.
We are going to show now that this curve is of class
Cl. Tt is of class C™ for small values of ¢ if the pivot
point is not on the boundary of the part.

Notice that (X*,Y*)(0,0) = (Xo,Yp) is the min-
imum of V and therefore is independent of . The
smoothness of the equilibrium curve will prove useful
in the sequel where its partial derivatives are used.

Proposition 4 The equilibrium curve is smooth.

(i) X*,Y*, x* and y* are continuously differentiable.

(i) if (—Xo,—Yo) ¢ OS (i.e. , the pivot point is not
on the boundary of the part), there exists do such
that X*, Y*, z*, and y* are C* over S* x [0, ).

Proof: (i) This proposition is a direct result of the
implicit function theorem. Indeed, if we define the fol-
lowing function from R* into R?

U (X,Y,6,0)

F:(X,Y,0,0 —>< gx 0 1Y )

X008 (x,v.6.9)

From (12), as V is of class C? (Proposition 2), F is

of class C'. By definition, the equilibrium curve min-

imizes the lifted potential field for fixed § and ¢ and
therefore fits the following implicit representation:

F(X*,Y*,0,6) =0



The differential of the partial function Fy s of the vari-
ables (X,Y) is exactly the Hessian of V. From Propo-
sition 3, this differential is invertible everywhere. Ac-
cording to the implicit function theorem, these condi-
tions imply that X* and Y* can be expressed as C*
functions of (6,0). As the equilibrium curve is unique,
these C* functions are necessarily the formerly defined
X*(6,6) and Y*(0,0).

(ii) If the pivot point is not on the boundary of the
part, —(X*(6,0),Y*(6,0)) ¢ 0S. By the continuity of
X* and Y*, there exists a &y such that for any § € S!
and 0 < 9 < §o, —(X*(6,9),Y*(0,9)) ¢ 0S. In other
words, if we follow the equilibrium curve for a small
4, the origin of the field remains completely inside or
completely outside the part and (X*,Y™*,0,§) remains
in a domain where F is smooth (from Proposition 2).
Therefore, according to the implicit function theorem,
X* and Y* are also smooth. Relations (13) and (14)
imply that z* and y* have the same differentiability
properties as X* and Y*. 2

(From now on, we will assume that the pivot point
is not on the boundary of the part, so that the partial
derivatives of the equilibrium curves are all defined for
small 4.

Properties of the equilibrium curve. We now
point out a property of the equilibrium curves that
will constitute the basis of our method to determine
the local minima of U. For a fixed value of § the local
minima of U are obviously on the equilibrium curve
associated to §. We are going to show that these local
minima are the points where (z*, y*) crosses the y axis
from x < 0 to x > 0. For that, we define

Ug(e) = U&(X*(ea 5)5 Y*(ea 5)5 0)
the minimum value of the lifted potential field for given
6 and §. The variation of U; () along the equilibrium
curve is given by the following proposition.

Proposition 5 For any § € S,

auvg . .
—2(6) = 815" (6,0)

Proof: For clarity, we omit ¢ in the notation of this
proof. By definition Uj (6) = Us(X*(0),Y*(6),6). Dif-
ferentiating this expression w.r.t. to 6 leads to

A
dU o) = anﬁXA(e) ve),0) - dX ) +

A
anﬁ (o), vy, 0 Do) +

anﬁ xNo), vAe),0)
anﬁ

- xe),vN0),0)
- 6|S| (cos 8 xX8) —sin 0 vY0))
— ss12Y6)

using expression (12) and the fact that the partial
derivatives of Us w.r.t. X and Y vanish at (X*,Y™*).
2

This proposition leads directly to the following prop-
erty.

Proposition 6 For any fized value of § < 1, the two
following properties are equivalent:

(i) (X,Y,0) is a local minimum of Us,

(i) X =X*0,0),Y =Y*(0,9) and the
equilibrium curve crosses the y-axis from
left to right when 0 Kncreases

z*(0,0) =0 and 6‘” 7 (0,6) >

Figure 4 shows the value of the lifted potential along
the equilibrium curve for a given part.

We are going now to devise a method for computing
these equilibrium configurations for small values of §
and for any kind of part, symmetric or not.

3.3 Computation of the Stable Equilibrium
Configurations of a Part for Small §

In [5], we proved that for a part with distinct pivot
point and center of mass (Xo,Yy) # (0,0), the stable
equilibrium configuration is unique. The proof is based
on the expression (10) of the equilibrium curve of pa-
rameter 6 = 0 and on the continuity of z*(6,d) and its
partial derivatives. More precisely, * (6, 0) vanishes for
two values of 8: 6, and 85 = 0; + 7. 2*(0,0) is increas-
ing at one of these two values (say 63) and decreasing
at the other one.

z*(61,0) =0 BG—GA(Q 0)<0

.73*(02,0) =0 i(02,0) >0

>
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Figure 4: Along the equilibrium curve, the variation of the
value of the lifted potential is proportional to wA Thus the
stable equilibrium configurations of the part are those where

the equilibrium curve crosses the y-azis from left to right.

By continuity of z* and %—”@A , we proved that for small
values of §, z* (6, 0) still vanishes only twice, around 6,
and 85 and therefore the stable equilibrium configura-
tion is unique.

When the pivot point and the center of mass are the
same (that is when (Xj,Yp) = (0,0)), this reasoning
does not apply since from (10) and (13), z*(0,0) = 0
for all . The following theorem however, states that
the criterion applied previously to z*(6,0) can be ap-
plied to the first non-uniformly zero part/'kal derivative
of z* w.r.t. §, evaluated for § = 0: %"Tzn(ﬁ,O). More
precisely, if %"Tz"(é?, 0) has only simple roots, i.e. , van-
ishes with non zero slope then for small §, x*(6, (}2 also
has only simple roots close to the roots of 66"7“;(0,0)
(Figure 5). Among those roots, some represents stable

equilibrium configurations, the other ones are unstable.

Theorem 7 For a given part, if there exists an integer
n > 0 such that

(i)  for any k such that 0 <k <n—1,
3%z

25.(0,0) = 0 uniformly over S',
"z

(it) %55+ (0,0) vanishes only at a finite number
of points (01, ...,02,,), an
(#ii)  for a% 1< <m, %(621,0) >0,

n+1
O (61-1,0) <0,

then for small values of 8, the part has exactly m stable
equilibrium configurations. These configurations con-
verge toward (Xo, Yy, 62) in the (X,Y,0) system of co-
ordinates, 1 <1 < m, when & tends toward 0.

g2 (0,0)

1 0y 03 04 __é

Figure 5: The first non-uniformly zero partial derivative
(6,0) of Auwrt s provides all the information about
the local minima of Uffifor small values of §. The values of
0 where this function vanishes with positive slope (62 and
04 on this example) are close (by continuity) to the wval-
ues where ncA(O, &) vanishes with positive slope for small §.
According to Proposition 6, these values of 6 are stable equi-
librium configurations.
Proof: Let us first notige that origh (6,,0) represents
0096m \"P?
the slope at 6, of B;Tﬁ(H,O) seen as a function, of 6.
Therefore condition (iii) simply means that aaan,(H,O)
changes sign at each 6, for 1 < p < 2m.

All the partial derivatives of x* are continuous.
Thus, from condition (iii), there exist two positive
numbers « and §; such that for any positive real num-
ber § < 6; and any integer [ between 1 and m,

b+ 15\
VO € (621 — a, 65 + @), éf@%w,a) >0
5
V0 € (62 — o, 6511 + @), Cgf@%(e,a) <0 (15)

Let us denote by I the union of the intervals of 8
defined above:

I= U 0p —a,0, + )

1<p<2m

and by J = S \ I the complement of I as shown on
Figure 5.

The proof consists of two parts:

1. We first prove that over each interxal constituting
I, for small fixed §, the slope %ia of z* keeps a



constant sign and therefore z* vanishes only once
over each of these intervals.

2. Then, we show that, for small §, z* does not vanish
over J.

1. Differentiating the equation defined in (i) w.r.t. 6,
we get that, for any k <n —1,

8k+1 *

EEa (6,0) =

uniformly over S'. If we take a ﬁx d 6 in the interval
(21—, 02;+a), and we con51der %o (0,0) as a function
of § that we temporarily denote by f(3), the above
equality can be rewritten

ok f

W(O)zo for 0<k<n-1 (16)

Moreover, (15) implies that Vd € [0, d1],

o f

S5 (®) >0 (17)

Therefore, using Taylor-Lagrange formula, for any § €
[0, 61], there exists 3, 0 < 8 < 1 such that

ok 6f

f0) = ZW aénwa)— (18)
6"f
= o5 (55)—>o (19)

This establishes that for any § <, 6; and any 6 €
(0 — a,05 + ), 1 <1 < m, %(0,5) > 0. Thus
for a fixed § € [0,41], the function z*(6,4) of @ is in-
creasing over (0 — «, 65 + o) and cannot vanish more
than once over this interval. Using the same reasoning,
we can establish that x* (6, ) is decreasing over the in-
tervals (6a1—1 — ,621 + @) and cannot vanish more
than once in each of them either.

2. From condition (ii), when 6 remains in J, 22 (9 0)

o (0, 0)‘ admits
a positive lower bound over J, that we denote by M

does not vanish. As J is compact, ‘

'I'L

aom (6.0

M:min{‘

,GEJ} >0 (20)

n A
;From the uniform continuity of ZZ2-(6,6) over the
compact set J x [0,d1], there exists dz, 0 < dz < &3

such that for any d € [0, 2] and any 6 € J,

onx* o"x*
‘ 55m 0,9) — 55m — (6, 0)‘ <M
and using (20),
671
‘ 55m (0, 6)‘ (21)

We can apply again Taylor-Lagrange relation. To keep
the same notation, f(§) denotes now z*(#,d) consid-
ered as a function of & for a fixed value of § € J.
We get from condition (i) that condition (16) is sat-
isfied and from (21) that g(;f (8) does not vanish over
[0, 2] and thus keeps a constant sign over this interval.
Condition (17) (or its counterpart %(5) < 0) is thus
satisfied over [0,d2]. We can reuse (18) and (19) (re-
placing > by < if ‘365 () < 0) to conclude that z*(8, )
doeinot vanish over [0,d2] and has the same sign as

2216,0).

If we now Konmder a fixed § < 5 and if we re-
call that E;M (0,0) changes sign between two subin-
tervals constituting J, we can conclude that z*(6,0)
vanishes ezactly once over each (6; — a,6; + a), 1 <
I < 2m at a value of 6 that we denote by 6;(6).
The stable equilibrium configurations of the part are
expressed in the (X,Y,6) system of coordinates by
(X*(021(8),0),Y*(62(5),0),05). As a can be cho-
sen as small as desired by making § tend toward
0, lims_00(8) = Oy. X*, Y* being continuous,
the stable equilibrium configurations converge toward
(Xo, Yo, 02;) as § tends toward 0. 2

Let us point out that in most cases, the first non
uniformly zero partial derivative 2-2-(#,0) has simple

roots (we will see later that these p(;itial derivatives are
trigonometric polynomials in #) and Theorem 7 can
be used. This theorem extends results from [12]. In
the next section we use Theorem 7 to compute all the
equilibrium configurations of a part under the radial-
constant force field.



4 An algorithm to Compute all Equi-
librium Configurations of a Part

This section is organized as follows. First we explain
how to 1terat1vxly compute expressions of the partial
derivatives 2 s (0,0) w.r.t. the partial derivatives of
the lifted radial potential field V' evaluated at (0,0):
WR(O 0). These expressions enable us to com-
pute the equilibrium configurations of a part using The-
orem 7. We detail all the necessary operations in an
algorithm. Then we make some comments about the
computation of %&(0,0). Finally, an example
illustrates the algorithm.

A
Expressions of %(0,0)
Differentiating Equation (13) yields

6k.'L'* k Y * kY *

. oY
55 (6,8) = cosb 55 (6,8) —sin@ B5F (6,9)

A
To compute an expression of &2 %5 (6,0) we need thus
f a*x

to compute expressions of “55— (6 0) and 8;;5;@ (6,0).
By definition, (X*,Y*) minimizes Uy s. Thus the
partial derivatives OUss and 8U" % vanish at (X*,Y*).

X
Using expression (12), this statement is equivalent to

oV
X
oV
Y

(X*(8,5),Y*(8,6)) + 6|S|sin6 = 0

97 (X*(8,6),Y*(8,5)) +d|S|cos§ = 0

By successively differentiating this system w.r.t. §
and by evaluating the resuAtlng systemka,t 6 =0 we
will get expressions of 2 a&k (9,0) and Baé,c (6,0). We
show below the ﬁrst tep of this process by computing
an expression of 9%-(6,0). Then we will address the

general case with hlgher order %kka(H, 0).

Distinct Pivot Point and Center of Mass If
(Xo,Yo) # (0,0), we express this vector in polar co-
ordinates: (Xg,Yo) = (pcost, psine), p > 0. Then,
from (10),

x*(6,0) = pcos(d + ).

z*(6,0) vanishes with positive slope for § = 2 —1) and
Theorem 7 (with n = 0) permits to conclude that when
¢ tends toward 0, the stable equilibrium configuration

is unique and tends toward (Xo, Yo, 3T — w) in the new
system of coordinates, that is (— p,O 2% —4h) in the
standard system of coordinates.

Same Pivot Point and Center of Mass We as-
sume now that (Xo,Ys) = (0,0). Let us differentiate
once the above system w.r.t. §. We get

9’V X+ 8’V ay* .

X2 99 +6X6Y % +|S|sinf = 0 (22)
8’V oxX* O’V oY*

XY 95 +6Y2 5 +|S|cosd = 0 (23)

where the partial derlvatlvee of V are evaluated at

(X*(6,0),Y*(6,0)) and &%=, 2X" are evaluated at

(0,9). If we take 6 = 0 in this system, we get

(9 0) sin 0
Hess V/(0,0) ( 8‘2}3A(0 0) ) = —|9| ( . ) . (24)
According to Proposition 3, the bove Hessian Ais in-
vertible, so tha}\expresswns of 2X-16,0) and 2X-(6,0)
and thus of ‘% 5(0,0) are obtamed by inversion of Sys-
tem (24). Let us notice that these expressions are
trigonometric polynomials of 6.

To get higher order derivatives of X* and Y™*, we
need to differentiate several times (24). Let us point
out a property of this system.

Proposition 8 Differentiating k—1 times system (22-
23) (k > 2) yields a system of the form:

ey A
Hess V(X*(6,9),Y* (6, 9)) ( IR ) B
o (0,9)

(25)
wheKe By, zsl a polynomial expression of wvariables
5X10,8), Z5-(0,6) for 1 < 1 < k—1. The
coefficients of this polynomial are functions of the
WE—(X*(G 8),Y*(0,9)), for 2 < i < k+1 and
0<y <.

Proof: This proposition can be easily proved by in-
duction. For k = 2, if we differentiate once (22-23), we
find that the proposition is satisfied with

o ( Va0 X752 4+ 2Va 1 XTY + V1 2 V2 )
? Va1 X2 + 2Vi o X7Y7 + Vo 32

8@+JV

where i, (
8 Y7

whage Vi, &

- (0,5),Y*(0,5)),
W(ea(s)a va = (0 6)

Xr =



Now, we assume that the proposition is satisfied at
order k, that is Ej in (25) is of the correct form. Let
us differentiate again this equality w.r.t. §. The left
hand side becomes

A
. . 2ot (0,)
Hess V(X*(6,9),Y*(6,9)) | 240 A +
86k+1 (076)
Va1 X1+ Vi oYy ) ( X5 )

( Va,o X1 + Vo Yy
Vi X7 + VoY Yy

Vo X7 + Vi ¥y

Notice that the first term of this sum is exactly the left
hand side of (25) at order k + 1. The second term can
be included in Ejq: it is of the correct form.

It remains to check that if Ey, is of the form described
in the proposition, so is Ey1. This test is straightfor-
ward. 2

The expressions involved in the above proposition
are rather complex. That is why we only give their
form instead of writing them here. However it is impor-
tant to notice the structure of the successive relations
expressed by (25). If we take 0=0in t}}\ese equations,
we get linear systems in (2= a(sk (6,0), 2 95 (0,0)). These
systems are invertible since Hess V' is positive definite.
By inverting these systﬁms 1terat1ve1y, we get succes-
A 65’“ (4,0) and 8832 (0,0) and thus
of 385€ (6,0) w.r.t. the partial derivatives of V" at (0, 0).
It can be verified that these expressions are trigono-

sive expressions of 2

metric polynomials in §. This iterative procedure is
the core of the algorithm presented below.

The Algorithm

Using the above develgpments, the roots of the first
non-uniformly zero ‘?Tzk(&, 0) can be computed by the
algorithm presented in Table 1. This algorithm needs
the partial derivatives of V evaluated at (0,0) and a
function, minimize, that computes the unique mini-
mum of V.

The Partial Derivatives of V'

If the part is polygonal, we can express exactly the
partial derivatives of V' and thus evaluate them for any
(X,Y). In this case, minimize can numerically mini-
mize V using a gradient method and return an approx-
imation of (X, Yp).

minima < 0
//Pivot point and center of mass distinct.
If ({5(0, 0) # 0) or ({0, 0) # 0)
(Xo,Y)) + minimize(V(X,Y))
(p, ) < polar—coord(ﬁXo, Yo)
minima < {(0,—p, 3 — )}
exit;
endif;
//Same pivot point and center of mass.
z[0] « 0;
expr[l] < expression (22-23);
n < 0;
while (z[n] = 0) do
n <+ n+1;
system < evaluate(expr(n],0 = 0);
(X[n], Y[n])«
solve(system,(%(& 0), %%A(B, 0)));
z[n] < cos @ X[n] —sin§ Y[n];
expr[n + 1] « differentiate(expr[n],d);
od;
z* <« differentiate(z[n], 6);
(61, -..,0m) « solve(z[n] =0, 6);
for each i between 1 and m do
If evaluate(z®,,0 = 6i) > 0
minima + minima U {(0,0, 6i)}
endif

od;

Table 1: Algorithm that computes the local minima of the
lifted radial-constant field Ufifor small §.

If the part is not a poligon, the partial derivatives of
V can be computed numerically. We do not give details
about these numerical computations. Some discussion
can be found in [11].

Example

Let us compute the stable equilibrium configurations
of the part represented in Figure 6. For this polygo-
nal part, symmetric by rotation of angle 7,
computed using Maple the expressions of 3 BV and ‘9V

These expressions are very long, we cannot report them

we have

here. Differentiating symbolically these expressions, we
obtained higher order derivatives of V' that we evalu-
ated at (0,0):

92V 92V
557(0,0) = 55(0,0) =
8\/_

——(Argsinh 3 — Argsinh )



0%V

axay 0 =0
%(0,0):%(0,0):0
afé?zw - ZZ«J =0
00 - St00 - -
4 4
00 =%

We apply now the successive steps of the algorithm
described in Table 1 to the part.

To snnphfy the notation, let us write A =
9Y.(0,0) = 2%(0,0). Substituting § = 0 in (22-23)

yields
Aagg 6,0) +|S|sind = 0
oY*
A 35 (6,0) + |S|cosé = 0
Inverting this system yields
0X* o s] . Y™ S
2 4,0) = —Tsma % 6,0) = 3 cosf

Substituting these equalities in (13) gives as expected
xz*(0,0) = 0.

Now, differentiating again (22-23) and substituting § =
0, we get

62X*
A 952 + Va0 X2 + 2Vo 1 X3V + V1oV = 0
o%y*
)‘352 + Vo 1 X2+ 2Vi o X3V + Vo sV = 0
it A
where V;; = 8«‘3(:fv (o, 0) /{(f _ %(0’0)’ vy =

5Y—(6,0) and 2% and & WQ— are evaluated at (6,0).
From this system, we extract expressions of the second
order partial derivatives of X* and Y*:

92X+
962

o?Y*

6.0=0 o

6,0) =0

Thus
8%z*

207 -0)

Figure 6: Polygonal part symmetric by rotation of an-
gle 3.

To get the third order partial derivatives of X* and
Y*, we need to differentiate twice (22-23) w.r.t. § and
take § = 0. This yields two equations of the form:

BX*

A (0,0 +... = 0
33y
A5 0.0 +... = 0

where --- stands for already evaluated expressions.
From this system, we get

FPX* sin6((2v/2 + 6) cos? § + /2 — 6)
6,0) = 2048

063 A4

Y™ c0s8((2v/2 + 6) cos? 6 — 3v/2)

5 (6,0) = —2048 S
and finally

3 .k
Pz (6,0) = 1024+/2 + 3072 —

963 At
We recall that A = %@(Argsinh 3 — Argsinh 1) >0

*

x satisfies the hypotheses of Theorem 7 for n =
3. 363 (0,0) vanishes 8 times, 4 times with negative
slope and 4 times with positive slope (for § = iF,
i = 0,1,2,3). We conclude that for small values of
4, the part has 4 stable equilibrium positions converg-
ing toward (0,0,i%) when § tends toward 0. The part
is thus positioned up to part symmetry by the force
field.

5 Conclusion

We have proposed a method to compute all stable equi-
librium configurations of a part subjected to the com-



bination of a unit radial force field with a small con-
stant field. This method is general and can be applied
to any part, symmetric or not. Beyond this method,
this paper reports a comprehensive study of the ac-
tion of radial and small constant potential fields over
parts. It proposes an interesting characterization of lo-
cal minima of the lifted potential field using the equilib-
rium curve and its partial derivatives for § = 0. Some
questions remain open however. All these results are
asymptotic for small §. The general case with any ¢
between 0 and 1 is far more difficult since we do not
have any expression of the equilibrium curve in gen-
eral and the stable equilibrium configurations are the
roots of the equilibrium curve. For this case, numer-
ical methods will probably be necessary. The rate of
convergence under the fields described in this paper,
as well as under previously proposed fields, is an open
question.
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