2002 IEEE Int. Conf. on Robotics and Automation, 841-846

Simulated Knot Tying

Jeff Phillips

Andrew Ladd

Lydia E. Kavraki

Department of Computer Science
Rice University
Houston, TX, 77005
jeffplaladd|kavraki@cs.rice.edu

Abstract

Applications such as suturing in medical simulations
require the modeling of knot tying in physically realistic
rope. The paper describes the design and implementa-
tion of such a system. Our model uses a spline of lin-
ear springs, adaptive subdivision and a dynamics sim-
ulation. Collisions are discrete event simulated and
follow the impulse model. Although some care must
taken to maintain stable knots, we demonstrate our
simple model is sufficient for this task. In particular,
we do not use friction or explicit constraints to main-
tain the knot. As examples, we tie a square knot and
o reef knot.

1 Introduction

It is often necessary to model deformable materials for
graphics and simulation applications. Examples in-
clude cloth modeling [2], soft tissue simulation [4] and
virtual surgery simulators such as [11]. The simulation
of deformation on a computer has led to development
and use of many approximate models and numerical
integration schemes. Some models use meshes of linear
or non-linear springs [13], [14] and [12]. Other models
use Boundary Element Methods BEM [7] and Finite El-
ement Methods FEM [9]. These methods are at various
places in a speed efficiency, realism and stability trade
off.

Surgical simulation makes new demands of the phys-
ically based computer modeling of deformables. Real
time models sufficiently realistic to train surgeons are
needed. In microsurgery simulation [3], in laproscopic
surgery simulation [1] and others, realistic real-time
simulation of rope is identified as a task. In a virtual
surgery world, we would like to be able to tie knots
to simulate suturing. To do this we must provide a
robust dynamics model and integration as well as a
robust solution to the collision detection problem for
deformable self-intersecting shapes.

Figure 1: Standard reef knot and our reef knot

This paper describes a method for knot tying with
simulated rope. The rope is a physically based dy-
namics simulation [14]. Our experiments consist of
pulling a loosely knotted rope configuration tight and
witnessing that the knot was maintained.

Our rope is a spline of linear springs [15]. The topol-
ogy of the rope varies adaptively to maintain the sur-
face of the rope. Self-intersections in the rope are
discrete event simulated using the impulse model of
collision [8] in the interpolation step of the physical
simulation. During the adaptive reparametrization of
the rope, some care must be taken to maintain con-
servation of energy, mass and momentum. This also
must be done during the numerical integration of the
resulting differential equations. The errors in our so-
lution are sufficiently small that they can be balanced
with a reasonable amount of damping [9]. These er-
rors come from modeling approximations, geometric
approximations, and dynamics integration.

There are several interdependent difficulties that must
be addressed by our solution or they will cause insta-
bilities which will lead to system divergence. Diver-
gence manifests itself either as the knot slipping or de-
generate oscillatory behaviour. In the area around a
tightening knot, the high curvature of the rope, multi-
ple collisions and opposing internal forces create a po-
tentially unstable situation. The dynamics simulation

must be able to cope adaptively as these conditions
vary at some parts of rope and the collision surface
must be approximately continuous over time. Oth-
erwise numerical errors will aggregrate rapidly. We
demonstrate that a simple but carefully chosen model
can be used successfully in simulating knot tying.

2 Model

Our rope model is constructed of a spline of linear
springs with control points at the end points of the
springs. Each spring knows its tension, its original
length, and the control points on either end of it.
Each control point is shared by two springs, except
for the terminal control points which only attach to
one spring. Using the tension and the original length,
each spring can calculate the force acting on a control
point using Hooke’s Law

F =—k(d—d,).

Each control point knows its mass, its velocity, and
the springs on either side. Any external energy accu-
mulated in the system is stored in the control points,
either in the form of momentum or from an external
force such as gravity or manipulation. Each control
point also represents the mass of half of each rope
segment on either side of it. To describe the volume
of the rope, we tile it with spheres of fixed radius cen-
tered at the control points.

For realistic collision detection, we need the surface of
the rope to be sufficiently consistent. We also need to
be more expressive when the rope is stretched tightly.
We address these issues by maintaining the spacing of
control points online.

1. We must ensure that small oscillations of a spring
close to equilibrium do not lead to too many os-
cillations in the structure of the rope.

2. Conservation of energy, mass and momentum
must be maintained as much as possible during
insertion and removal of control points.

To simulate the rope we calculate the trajectories of
all of the control points individually every time step.
From these trajectories we can predict collision events
over the time step, which we can handle individually
at the appropriate simulation times.

2.1 Main Loop

Algorithm 1 describes the main loop of our simulation.
Passing through the loop once simulates a fixed block

Algorithm 1 Toplevel loop

1: loop

2: recompute rope topology

3: predict control point trajectories

4: generate collision events and queue
5: while queue is not empty do

6 simulate collision

7 dequeue stale events

8 queue secondary events

9: end while

10: end loop

of time. We first examine the rope and adaptively
reparametrize if necessary. Afterward, the equations
of motion are integrated and trajectories for the time
step are set. The trajectories of the control points
are then examined and collisions are scheduled in the
discrete event simulation queue. During the discrete
event simulation, the events are dequeued and simu-
lated in order. During a collision, impulse occurs and
the control points’ trajectories are adjusted. Stale col-
lision events are dequeued and secondary events are
queued.

2.2 Adaptive Subdivision

Structural oscillation during simulation is avoided by
employing a hysteresis threshold using a < 8 as the
low and high constants respectively. When the dis-
tance between adjacent control points is larger than
B subdivision occurs and when the distance between
the end points of an adjacent triple of control points is
less than «, the center point of the triple is contracted.
The precise implementation of the rope topology re-
computation pass is given in Algorithm 2.

Algorithm 2 Recompute rope topology

1: fori=1,...,n—1do

if DIST(p[i], p[i + 1]) > S then
INSERT(¢)
continue

else if DIST(p[i], p[i + 2]) < a then
DELETE(i + 1)
i=1+1
continue

9: end if

10: end for

In Algorithm 2, the array p contains the positions of
control points, DIST is the metric, INSERT(3) in-
serts a control point just after control point i and

DELETE(:) contracts the ith control point.

We chose to use a hysteresis threshold instead of a
single threshold value to provide a range in which an
intermediate control point can exist between control
points. Small oscillations occur naturally in the sim-
ulation when settling to an equilibrium. Each change
to the shape of the surface causes small numerical er-
rors in the dynamics and the efficiency of the collision
detection. Repetitive changes in small time span can
aggregate error and lead to system divergence.

2.3 Insertion and Deletion Operators

The stability of the system is dependent on conserva-
tive equations describing adaptive changes to the sys-
tem. During insertion and removal of control points
we need to conserve momentum.

The springs hold the potential energy of the system.
The control points hold the mass and the kinetic en-
ergy of the system. Since a control point represents
the mass of two separate pieces of the rope, half the
segment on the left and half the segment on the right,
it needs to distinguish between the two. Each control
point is given a left mass and a right mass. It also has
an associated left and right velocity corresponding to
each mass.

Whenever a new control point is added, it receives
half of its right neighbor’s left mass and half of its left
neighbor’s right mass. It stores them as right and left
masses respectively. The masses maintain their veloc-
ities to conserve momentum. The new control point
is added along the line between the two old control
points based on a weighted average of the left mass
of the right old control point and the right mass of
the left old control point. Notice that the new control
point is placed at the center of mass of the old spring.
The original distances are divided in the same ratio.
In Figure 2, Control Point B is inserted between Con-
trol Points A and C. The table in Figure 2 shows
plausible values for an example of this process.

Removing a control point is the inverse of adding a
control point. The merged velocities may not be equal,
so they are recalculated with a mass-weighted average.

Removal of a point can cause numerical error. The
current length is almost surely shorter than the sum
of the old current lengths, but this added energy will
quickly dissipate as the control points are pushed out
toward an equilibrium position. Removal can change
the center of mass and the internal energy of the sys-
tem. If a control point with more left mass than right
mass is closer to its right neighbor than its left neigh-

Removal of control point

Insertion of control point

Cntl Pts M; My Vel Velr Pos do d
Two CPs

CP A 5 12 (-10, 5, 3) (-4, 5, 8) (2,0,0) 10 5
Cp C 8 3 (5, 5, 4) (6, 6, 6) (7,0,0)

Three CPs

CP A 5 6 (-10, 5, 3) (-4, 5, 8) (2,0,0) 4 2
CP B 6 4 (-4, 5, 8) (5, 5, 4) (4,0,0) 6 3
CP C 4 3 (5, 5, 4) (6, 6, 6) (7,0,0)

Figure 2: Insertion and removal of control points

bor and is removed, then the center of mass will shift
toward the left mass. More mass is being transferred
a longer distance left than is being transferred to the
right. Internal energy will be altered any time a con-
trol point is removed that is not on the line segment
joining its two neighbors. This will cause the current
distance of the new spring to be less than the current
distance of the sum of the two old springs. We re-
duce the effect of numerical error by adding damping
into the system. Damping has the effect of stabilizing
any oscillations around the equilibrium energy posi-
tion and of smoothing discontinuities in the energy
distribution. With the appropriate transfer of mass
and energy as well as damping, we can insert and re-
move control points with sufficient stability.

3 Physical Dynamics

We opt for a dynamics simulation since self-
intersections cause changes in the boundary conditions
of the physical equations of energy. To simplify this
task, we assume the forces are constant over a small
time interval and integrate the predicted change in po-
sition of the control points viewed as a particle field.
We use Stoermer’s Rule [10], which computes change
in position directly from the second derivative rather
than via a double integration. Our experience sug-
gests that this method is more stable than a method
such as Euler’s method. Algorithm 3 describes the op-
eration of this integration scheme for a single variable,
x, which evolves over finite time steps (At) with sec-
ond derivative & = f(t, z), a function of time and the
variable. Notice the change in z is integrated directly
from the second derivative and the first derivative is
integrated independently. This is valid for conserva-
tive second order differential equations.

We adapted Stoermer’s rule to handle the notion of

Algorithm 3 Stoermer’s rule
1: Az = Atz + § f(t,)]
2: repeat
33 xz=x+4+Ax
4 t=t+ At
5 d=45T 4 %f(t,:v)
6
7

t
Az = Az + (At)? f(t,z)
: until we are done simulating

left and right mass and to be used in a dynamics sim-
ulation. Left and right sides of the control point are
integrated separately and then the total change in po-
sition is accumulated. The change is then simulated
with interpolation over the time step.

If a change in boundary conditions occurs over the
course of the interpolation, for example, a collision
causes the velocity to change, then the appropriate
variables are updated and then interpolation contin-
ues. After such a change, the loop in Algorithm 3 is
reset for the affected control points and restarted with
the new values.

3.1 Collision Detection

Our collision detection consists of checking for col-
lisions between the spheres on top of the control
points, an easy calculation. There are no spaces be-
tween spheres because the threshold for adding con-
trol points is twice the radius. When a gap is about to
form, a new sphere is added as in Figure 3, ensuring
that a collision between the ropes is not missed by a
part of the rope passing through a gap in a different
part of the rope.

Before After

OGN &

Figure 3: Insertion of a control point

We want to handle every event at the time it occurs,
but we wish to avoid the expense and difficulty of ad-
vancing the dynamics simulation every time we han-
dle an event. To avoid this problem, we run a discrete
event simulator during the interpolation step between
dynamics simulation samples. We calculate when a
collision will occur within a time step by comparing
the paths of control points over a time step.

Adjacent control points will be in collision with each

other. In fact, control points which are each other’s
neighbor’s neighbor can also be in contact. These col-
lisions are simply not checked for.

When two particles collide, they affect each other’s
trajectories, disrupting the momentum of the system
and changing the boundary conditions. The points
must not pass through each other. We choose to use
a simple impulse model [8]. This ignores any friction
forces and assumes elastic collision. Our algorithm
also ensures that the control points’ new velocities re-
pel them from each other as in Figure 4.

Before After

() @2

Figure 4: Collision of control points

An error can occur when a new control point is added
and its sphere is already in contact with another
sphere, simply reversing the control points’ velocities
will not ensure that they will come out of collision.
A naive implementation of the collision dynamics will
generate instantaneous collisions repeatedly causing a
loop. To overcome this issue we force them apart, as
shown in Figure 5.

Before After

) e X=

Figure 5: Overlapping control point

We also want to maintain locality in the effect of the
collision. When the velocity of a control point changes,
the integration in Algorithm 3 is reseeded which in-
creases the numerical error during the next time step.
In our model, each collision causes the velocity of only
two control points to change.

4 Experiments

In order to verify our rope model, we ran simulations
in our OpenGL visualizer. A sphere is drawn at each
control point to visually approximate the volume of
the rope. A frame is redrawn after each time step.
Our simulations represent systems reacting to physi-
cal forces. To verify the correctness of our model, we
rely on the visual feed back from the simulator. Er-
rors in stability are apparent because if they are an

issue they amplify and become obvious, if they do not
amplify they are dissipated by damping and are not a
problem. The images below are snap shots from such
simulations. All experiments are run on a Pentium III
900MHz workstation.

4.1 Simulation of Gravity

We wish to verify the correctness of the stability and
realism of our system when in a simple simulation with
physical forces. We interpolated the points between
two control points to form a horizontal line. We fix the
end points and apply a universal downward force on
the rope, simulating gravity. As shown in Figure 6, the
center of the rope falls, points are inserted adaptively,
the rope rebounds, oscillates briefly, and reaches an
equilibrium.

Figure 6: Effects of gravity

4.2 Square Knot

We wish to demonstrate that our model can tie a knot,
so we begin with a simple square knot. Our initial con-
figuration consists of a loose square knot. The ends
of the rope are given forces to repel them from the
center of the knot. This is done by applying an ex-
ternal force on the section of rope at the end being
pulled. The knot tightens without slipping, eventu-
ally reaches an equilibrium, and stabilizes. The force
on the end portion of the rope causes that portion
to stretch considerably, but minimal stretching occurs
around the knotted part. The rope stretches to 118%
of its original length throughout the simulation. The
screenshots in Figure 7 are taken at 40 seconds and
then again at 3 minutes and 30 seconds.

4.3 Reef Knot

A reef knot is often used in surgical suturing and pro-
vides another example of a knot for our model. We
simulate it by initially forming a loose configuration of
the knot with two pieces of rope. When the ends are
pulled in the same manner as with the square knot,

Figure 7: Tying a square knot

the knot tightens and holds. The screenshots in Figure
8 are taken at 3 minutes and 5 minutes into the sim-
ulation and the rope stretches to 116% of its original
length, but mainly around the ends where the force is
directly being applied.

Figure 8: Tying a reef knot

4.4 Discussion

Our simulation decouples the particle simulation from
momentum changing events: insertion and removal of
control points and collisions. This allows us to find
and handle every collision at the appropriate time
without slowing down the broader simulation of par-
ticles.

We can automatically insert and remove control points
to maintain the consistency of the collision surface.
Our model presents a way of reconciling the adaptive
subdivision with conservation of energy and mass.

Our experiments have shown we can model a variety
of rope types by varying damping, tension and exter-
nal forces. Many combinations of settings are stable.
Generally, as tension increases, the amount of exter-
nal force and damping also needs to increase otherwise
the system becomes volatile.

We have chosen a conservative integration scheme
rather than a double integration scheme or predic-

tor. This avoids expensive, multiple force recompu-
tations that cannot reliably be cached because of the
dynamic nature of the system. Also, our experience
showed that double integrations are not numerically
stable for our model.

We do not use friction, inelasticity in collisions, or ex-
plicit knots. Our knots hold only using an impulse
model. Despite not using these physical assumptions,
the energy in our knots reduce to the correct posi-
tion. As the knots become tighter, the control points
have more frequent but weaker collisions. This simple
method alone is able to maintain knots.

5 Future Work

The collision detection is the current speed bottleneck
in the code. It can potentially be optimized through
of the use of kinetic data structures [5]. The algorithm
presented in [6] is close to having the right operations,
for example. Maintaining such a data structure would
allow us to replan the collisions in O(n log® n) or better
rather than O(n?).

Investigation into using more realistic models to model
torsion, stretching, bending and squeezing of the rope,
can improve the realism of our model.

Our collision geometry is somewhat simplistic. By
tiling the surface of the rope with triangles or quads,
we could obtain a finer approximation of the sur-
face. Potentially, a related subdivision algorithm
could guarantee continuity of this surface during ad-
dition or removal of a control point.

We would also like to tie more complex or multi-rope
knots that could possibly interact with static or rigid
background, for example hitches, weaves or some of
the more complex surgical knots.

Acknowledgments

Jeff Phillips is partially supported by a Brown Un-
dergraduate Research award and by NSF IRI-970228.
Andrew Ladd is partially supported by FCAR 70577
and by NSF IRI-970228. Work on this paper by Ly-
dia Kavraki was supported by NSF CAREER Award
TRI-970228, a Whitaker grant, an ATP Award and a
Sloan Fellowship.

References

[1] C. Basdogan, C.-H. Ho, and M. Srinivasan. Virtual
environments in medical training: graphic and haptic
simulation of laparoscope common bile duct explo-

2]

[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

ration. submitted to IEEE/ASME Transactions on
Mechatronics.

D. Breen, D. House, and M. Wozny. Predicting the
drape of woven cloth using interacting particles. In
SIGGRAPH, pages 365-372, Orlando, FL, July 1994.

J. Brown, K. Montgomery, J.-C. Latombe, and
M. Stephanides. A microsurgery simulation system.
In Medical Image Computing and Computer-Assisted
Interventions (MICCAI), Utrecht, The Netherlands,
October 2001.

D. Chen and D. Zeltzer. Pump it up: Computer an-
imation of a biomechanically based model of muscle
using the finite element method. Computer Graphics,
26(2):89-97, July 1992.

L. Guibas. Kinetic data structures: A state of the art
report. In P. Agarwal, L. Kavraki, and M. Mason,
editors, Robotics: The Algorithmic Perspective. A. K.
Peters, 1998.

L. Guibas, F. Xie, and L. Zhang. Kinetic collision
detection : Algortithms and experiments. In IEEE
Int. Conf. Robot. & Autom., pages 2903-2910, Seoul,
Korea, May 2001.

D. James and D. Pai. Artdefo : Accurate real
time deformable objects. Computer Graphics (SIG-
GRAPH’90), pages 65—72, August 1999.

B. Mirtich and J. Canny. Impulse-based simulation of
rigid bodies. In Proceedings of ACM Interactive 8D
Graphics Conference, 1995.

G. Picinbono, H. Delingette, and N. Ayache. Non-
linear and anisotropic elastic soft tissue models for
medical simulation. In IEEE Int. Conf. Robot. € Au-
tom., 2001.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
New York, NY, second edition, 1992.

J. Rotnes, J. Kaasa, G. Westgaard, and al. Digital
trainer developed for robotic assisted cardiac surgery.
In Medicine Meets Virtual Reality (MMVR), 2001.

D. Terzopoulos and D. Metaxas. Dynamic 3D mod-
els with local and global deformations. IEEE Trans.
Pattern Anal. Machine Intell., 13(7):703-714, 1991.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer.
Elastically deformable models. Computer Graphics
(SIGGRAPH’S7), 21(4):205-214, 1987.

D. Terzopoulos and A. Witkin. Physically based mod-
els with rigid and deformable components. IEEE
Computer Graphics and Applications, pages 41-51,
November 1988.

A. Witkin and W. Welch. Fast animation and con-
trol of non-rigid structures. Computer Graphics (SIG-
GRAPH’90), pages 243-252, 1990.

