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Sampling-Based Roadmap of Trees for Parallel
Motion Planning

Erion Plaku, Kostas E. Bekris, Brian Y.

Abstract— This paper shows how to effectively combine a
sampling-based method primarily designed for multiple quey
motion planning (Probabilistic Roadmap Method - PRM) with
sampling-based tree methods primarily designed for singlguery
motion planning (Expansive Space Trees, Rapidly-Explorig
Random Trees, and others) in a novel planning framework that
can be efficiently parallelized. Our planner not only achiees a
smooth spectrum between multiple query and single query pla-
ning but it combines advantages of both. We present experinms
which show that our planner is capable of solving problems tht
cannot be addressed efficiently wittPRM or single-query planners.

A key advantage of our planner is that it is significantly more
decoupled thanPRM and sampling-based tree planners. Exploiting
this property, we designed and implemented a parallel versin of
our planner. Our experiments show that our planner distributes
well and can easily solve high-dimensional problems that émaust
resources available to single machines and cannot be addezsl
with existing planners.

Index Terms— Motion planning, sampling-based planning, par-
allel algorithms, roadmap, tree, PRM, EST, RRT, SRT.

|. INTRODUCTION

H in planning with flexible objects [35], [37], [45], re-
configurable robots [56], complex planning instances [5
manipulation planning [51], and computational biologyrsba
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Fig. 1. A scene from our benchmarks. In problem “narrow4tezich robot
must go through two very narrow passages.

phase and all computations occur during query resolution.
Such planners typically explore the space using a single or
a bi-directional tree [8], [25], [26], [39], [40], [49], [92
Recent papers (e.g., [25], [40]) contain extensive refggen
to sampling-based motion planners.

The Probabilistic Roadmap MethcoPR() is an efficient and
easy to implement planner primarily designed for multiple

IGH-DIMENSIONAL problems such as those arisinqquery motion planning problems [29]-[32], [47], [541RM

operates by sampling configurations in the free configunatio
pace Ciee, and connecting them using a local planner. Al-
though a typical implementation uses a very simple locaipla

problems [6], [7] test the limits of current motion plannepq, ong yniform pseudo-random sampling, it has been shown
implementations. One important avenue for solving sucltnprothat a variety of alternate approaches ranging in sophtitic

lems is to effectively use parallelism in motion planninguirO
work describes a robust planner, which provides a smo

and cost can be applied without sacrificing correctness in

qjines of obtaining a faster planner [20]. Indeed, two of e k

transition from single query to multiple query planners andg;eq in the context afRM are the power of the local planner

can be used for problems that are beyond the capabilirt{?ﬁ
i

of current planners. The planner can be used in a seque
implementation or a powerful parallel implementation.

Sampling-based planners have been used extensively duré'
the last decade for multiple query or single query motio

planning [1], [3], [9], [10], [25], [30], [32], [34], [35], £0],

[11], [28], [32] and the way sampling is performed [3],
1, [13], [20], [21], [23], [24], [27], [32], [38], [55].

In this paper we replace the local plannerR®M with a
ﬂ%le guery sampling-based motion planner. Among thdeing
Euery planners that have been developed recently, Expansiv
Space TreeseSTs) ! [25], [26] and Rapidly-Exploring Ran-

[47], [49], [52]. In multiple query motion planning, typitia TreesKRTs) [39], [40] have been very successful and are

a roadmap is built during a preprocessing phase in order

quickly respond to on-line queries [10], [32], [37]. Altern

tively, in single query planning, there is no preprocessin

Manuscript received April 13, 2004; revised November 23)20Nork on
this paper by the authors has been partially supported by 0888237, NSF
ITR 0205671, a Texas ATP grant, and a Sloan Fellowship to kr#da. A. M.
Ladd is also partially supported by an FCAR grant. Experitmevere run on
equipment supported by AMD and NSF EIA 0216467. Preliminagysions
of this work have appeared in International Symposium ondiiob Research,
2003 and International Conference on Intelligent Robots &ystems, 2003.

The authors are with Rice University, Department of Compusei-
ence, Houston, TX 77005 USA, emailpl akue, bekris, brianyc,
al add, kavraki }@s.rice. edu. The corresponding author is Lydia
E. Kavraki.

ed in our work. However, other sampling-based tree planne
can be used (e.g., [35]).
9 The idea of using multiple trees has been mentioned in [39]
and used in [41], [46], [53]. In [41], a single-query method
is developed that takes advantage of the exploration done in
solving previous queries. Initially a bi-directiongkT creates
two trees to answer a single query. At the end, the trees @re no
discarded but kept to answer subsequent queries. The planne
proceeds by generating random configurations and attegptin

1The acronymEST to describe Expansive Space Trees does not appear in
the original papers, but is used in this paper for converienc
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TABLE |

to connect each new configuration to every tree created as a
SAMPLING-BASED ROADMAP OF TREES(SRT) ALGORITHM.

result of answering previous queries. In [46], a roadmap is
initially constructed usin@RM and then enhanced usiRgTs
to connect different connected components of the roadmap.
The approach taken in [53] is for single-query planning. The
method keeps some of the samples that the in#a could
not connect to as possible roots from where to grow othestree 1: Vr < 0, Er — 0, Q — 0, Ec < 0.
Attempts are made to connect neighboring roots together to? Wh}'e(l‘/gu‘”j t[r(egorooted at & collision-free random confi
form local trees or to connect the roots to already formedlloc Vi — Vp U{T). g
trees and the trees rooted at the initial and goal configmati 5. . QU {¢r}, whereqr is the representative &f.

Our planner creates a roadmap of trees that integrates the: for all 7 ¢ Vi do
global sampling properties dfRM with the local sampling 7 Sciose < @ set ofn. closestgrs € Q to gr.
properties of single query tree-based planners. Earlisioes 8 Srana @ set ofn, randomgr/ € Q 10 gr.
of our planner [1], [9] were termed Probabilistic Roadmap oflg': forEeﬁI 75%3;&%? zj(; g1’ € Setose U Srana}
Trees PRT), but as suggested in [13], [42], the probabilistic 1. not CO’NNECTED(TLTQ) and CONNECT(T1, Tz) then
sampling could be replaced with other sampling schemes. To2: Er — Er U{(Th,T»)}.
emphasize the importance of sampling, we hame our plannér
Sampling-based Roadmap of Tre€gT).

Our work is important in many respects. We propose an in-
tegration scheme that fully exploits successful samplinged Il. SRT PLANNER
methods. Firstly, we obtain a planner which is faster thgmn SRT constructs a roadmap aimed at capturing the connec-
and more robust than the tree planners that we used, namgliy of (e and then uses the roadmap to answer multiple
ESTs andRRTs. SRT provides a smooth spectrum betweeaueries [1], [9].SRT is designed primarily as a multiple query
single query and multiple query planning that combines thganner, but it should be noted that it is most effective for
advantages of both. In our work, we take advantage of recefiicult planning problems, as our experiments in section
very effective sampling methods employed s andRRTS |y syggest. For such problems, there is no clear distinction
and provide a new sampling scheme fRM. It should be penveen single versus multiple query methods.
noted that the proposed overall samplingsaT is in the spirit  The nodes of the roadmap are not single configurations
of non-uniform sampling and refinement techniques used jy; rees, which are referred to as milestones. Connections
earlier work of PRM. Secondly, the local exploration of thepanyeen milestones are computed by sampling-based tree
configuration space can be done iqdependently by using tfﬁénners. The tree planners that we have usedk&Ts [39],
planners such agSTs andRRTS. This property makeSRT [40] andESTs [25], [26]. The pseudocode f6RT is in Table .
significantly more decoupled tha&®rM and tree planners such™ 5 roadmap is an undirected gragh= (V, E) over a finite
asESTs andRRTs and allows for an efficient parallelization.gg; of configurationd” C Ciee and each edgéy’,q") € E
Although many subroutines &fRM can be run effectively in represents a local path frogf to ¢”. The undirected graph
a highly distributed fashion, efficient coordination of izars Gt = (Vr, Er) is an induced subgraph of the roadmap which
processing resources requires significant additionalrafgo s gefined by partitioning? into a set of treeq?, . .., Tx and
mic design. By increasing the power of the local planngfyniracting them into the vertices 6% In other wordsyy =
and by using more complex mileston&&T can distribute its Ti,...,Tx} and (T}, T;) € Ey if there exist configurations
computaﬁon. almost evenly among processors, re_quirdsg Iit&i € T; andg; € T; are connected by a local path. As shown
communication, and allows us to solve very high-dimendiong Tap|e |, the roadmap construction proceeds in three stage
problems and problems that exceed the resources avai@bletiestone computation (lines 1-5), edge selection (line®)6

the sequential implementation. _ and edge computation (lines 10-12).
This paper presents experiments with up7®degrees of

freedom (DOFs) wher@RT obtains a solution at a fraction ) .

of the running time needed byRM, EST, or RRT. Fig. 1 A Milestone Computation

shows an example wit24-DOFs. We were able to obtain In SRT, the trees of the roadma@'; are computed by
nearly linear speedup for parallBRT. As with other motion sampling their roots uniformly at random ityee and then
planners, generalizations (fRT to many other kinematic using a sampling-based tree planner to explore the region
planning problems are straightforward and the use’Rifs around the root configuration. If the initiaj,,;;, and the goal,
and ESTs as subroutines gives a natural way to extend thg,.;, configurations of a query are known in advance, they
planner to kinodynamic planning instances [18], [25], [40] should be used as roots to makBT even more efficient.

In section Il we describe theRT algorithm. Section 11l de- Each tre€l” is incrementally extended, where at each iteration
scribes the parallelization of tt8RT algorithm. In section IV a new random configuration,.nq, iS generated and a local
we describe the experimental setup, the set of benchmapkanner, e.g., straight-line planner, attempts to conseante
used to test the efficiency of our planner, and the resuttenfigurationq € T t0 ¢;anga. If the local planner succeeds,
obtained. We conclude in section V with a discussiorsBll  then the configuration,.,q and the edgéq, ¢.ana) are added
and possibilities for future work. to T (see [25], [40]).

Input: K, number of milestones.
Output: A roadmapGr = (Vr, Er).




PLAKU, BEKRIS, CHEN, LADD, AND KAVRAKI 3

TABLE Il

B. Edge Selection
OTHER PLANNERS AS INSTANCES OFSRT.

Each tre€l” defines a representative configuratignwhich

is computed as an aggregate of the configurations.i®©ur | K m ne m nmp m

. . . . PRM | any 1 any any 1 0
implementation uses the centroid. &f = {q7,,...,qr.} IS RRT| 0 0 1 0 0 any
the set of representatives, then for eaghe @, we determine EST| 0 0 1 0 0 any

ne closest andn, random representativeg,, and add each
(T3,T;) to the graph of candidate edgé&: = (Vr, Ec).
A distance metric defines closeness and the closest ne'ﬂght}ﬂn

. i estones;n,, the number of random neighbor milestones;
are found u5|ngcd-tree§ [17]. Random ne|ghbors are used tﬁp, the number of close pairs to check with a straight-line
offset any problems with the distance metric.

planner before running the tree-connection algorithm;the
number of iterations to run the tree-connection algorithm.
C. Connected Component Heuristic A nice feature ofSRT is that by setting these parameters

The objective of our planner is to determine the existenéfferently, SRT can behave exactly a&RM, RRT, or EST as
of a path. To this end, we avoid computing candidate edgdgstrated in Table II.
that would create cycles. Since a query would never succeed
due to an edge that is part of a cycle, it is indeed sensible I1l. PARALLEL SRT PLANNER

not to consume time and space computing and storing suchyigh_dimensional problems arising from complex robotic
edges. In some cases, however, the absence of cycles RAyems test the limits of current motion planners and requi
lead the query phase to construct unnecessarily long paifig; jevelopment of efficient parallelized motion plannés t
This drawback can be mitigated by applying post-processige |l advantage of all the available resources. Deshite

techniques, such as smoothing, on the resulting path. need for fast solutions for such problems, little work esist
on parallel motion planners, especially when contrastatl wi
D. Edge Computation the work on sequential motion planners. In [43], a parallel

f?L&orithm for 6-DOFs manipulators is developed based on

the property that the configuration space obstacle for anunio

of objects is the union of the configuration space obstacle
the individual objects. In [15], [16], a parallel versiaf

he randomized path planner [8] is proposed that uses the

gr paradigm, i.e., different processors compute the same

paths in collision [20]. If any local path is found, no furthealgorithm and as soon as a solution is found, the computation

computation takes place. Otherwise, a more complex trew@PS: The work in [22] discretizes and then decomposes the
connection algorithm is executed, e.g., bi-directiora or Cconfiguration space into hypercubes and cyclically assigas

EST. During the tree connection, additional configurations afkPloration of the hypercubes to the available proces3ors.
typically added to the tree®; andT;. If the tree-planner is method is impracticable for high-dimensional problems due

successful, the edgél}, 7;) is added toEr and the graph _to the discretization of the configur_ation space. The _vvorks
components to whicl; and 7} belong are merged into one. N [5] and [14] focus on_embarra;smgly_ parallgl algorithms
for PRM and RRT, respectively, which avoid any interprocess

_ communication and in the context PRM andRRT are limited
E. Queries to memory-shared systems.

Queries are solved by connecting,ix and gga1 to the In this section, we describe the design and implementation
roadmap and proceeding by graph search. Two tfEgg,and of a parallel version o8RT designed for solving very high-
Teoa rooted atginic andggoal, respectively, are grown for few dimensional problems that exceed the resources available t
iterations and added to the roadmap. Neighborgigf and single machines and that cannot be efficiently addressdd wit
Teoal, denotedSiyir and Sgoa1, respectively, are computed asexisting planners. The efficiency of our parallel plannenst
a union ofn. closest andn, random milestones. The tree-from its hierarchical structure that allows the division of
connection algorithm alternates between attempts to @tnneomputation into large blocks. Our algorithm can be apptied
Tinit to each milestone i%ini; andTy.. to each milestone in memory-shared or message-passing systems. The destriptio
Sgoal- A path is found if at any poinfi,i; and Ty, lie on of the algorithm is in terms of message-passing systems.
the same connected component of the roadmap. The quality
of the path is improved by applying path smoothing.

Candidate edges are computed by a sampling-based
planner. For each candidate ed¢g&,T;), n, close pairs
of configurations off; and T; are quickly checked with a
fast local planner. Equally spaced points along the sttai
line between two configurations are tested for collisiomgsi
bisection, which increases the chances of quick rejection

A. Data and Control Flow Dependencies

Before relating the details, we discuss data and control
F. Parameters flow dependency in each stage of t&T algorithm. During
SRT has several parameters which we now summariz@ilestone computation, there are no dependencies. Eaeh mil
K, the number of milestones used in the construction efone can be processed in parallel. Additional paralletindas
the roadmap;n, the number of configurations used in thetymied by the sampling scheme we use to generate milestones
generation of a milestone;., the number of closest neighborand would be considerably more involved. Random edge



4 SAMPLING-BASED ROADMAP OF TREES FOR PARALLEL MOTION PLANNNG

selection can be done in parallel; however, the distribugd  4) Partition Computation:The partitioning is described in
the closest edge selection is more difficult since it requirdable Ill under @MPUTE PARTITIONS. Given the graplG¢,
the construction of a search structure that depends on the problem of finding “good” partitions is formulated as
representatives of the milestones. Finally, edge comipuisit an optimization problem: determine a partiti@i, , ..., Tp,
are not entirely independent of each-other. Since milestorof the milestones that maximizeEf:1 |[Ec N Ep,|. This
can change after an edge computation as a result of addisigan instance of the graph partition into parts problem
new configurations to the milestones and since computing which is known to be NP-hard fof > 2. Graph partition
edge requires direct knowledge of both milestones, the edg®blems, however, arise in many computational tasks jfyta
computations cannot be efficiently parallelized withoutnso in distributed computing, and effective heuristic apples
effort. Furthermore, computation pruning due to componehave been found [44]. We use the classical Kernighan-Lin
analysis (see section 1I-C) entails control flow depend=sicialgorithm [33] which is a greedy local optimization apprbac
throughout the computation of the edges. Our experimer@$ice the partitions are computed, they must be assigned to
with the sequential implementation revealed that the bdilk the processors in such a way that the number of milestones
the run time occurs in milestone and edge computation. that need to be exchanged is minimized. This is an instance of
the maximum bipartite matching problem and can be solved
B. Computation of ParalleRT efficiently with the Hungarian algorithm [48].

We have chosen a scheduler—processor architecture for oufFhe scheduler recomputes the mapso that it reflects
parallel implementation. The processors are responsinle the changes due to partitioning and the assignment operatio
milestone and edge computations. The scheduler arbitra@@note the updated map by, ie., o'(k) = P if the k-
milestone ownership, handles edge selection, assignscadge th milestone is assigned ;. Then the scheduler sends the
didates to processors, and manages the connected compore@ated map to all the processors involved in the partitigni
data structure. Parall&RT is described in Table III. Processors are now responsible for implementing the parti-

1) Milestone ComputationThe milestone computation istioning and the assignment operation. In particuldrneeds
described in Table Il under @UPUTE MILESTONES Each to send thek-th milestone toP; if o(k) = P, ando’(k) =
processotP; computes a séfp, of milestones and sends to theP;, and P; needs to receive thé-th milestone fromp; if
scheduler their representatives urfil milestones have beenc (k) = P; ando’(k) = P,. The communication betweeh;
computed. The séfp, is owned byP; and stored locally i’;, and P; is non-blocking. Each processor posts the requests for
while the set of the representatives is stored in the sckeduits send and receive operations and continues immediatély w
The communication during this stage is limited, non-blogki edge computations. The communication becomes blocking
and occurs only between the scheduler and the processars. @ihly if computing a particular edge = (77,7") requires
scheduler maintains a map such thatr(k) = P, if the k-th  the completion of one or two receive operationsZnor 7.
milestone representative is sent to the schedulePhy

2) Edge Selection:The scheduler computes the graph IV. EXPERIMENTS AND RESULTS

S;C ue:ntigI/Tcig Zl'acé)fleclar':'?:g?et?s i?)geasra?lzliggtsi‘ggt:)ef:tﬁgethe The experiments in this paper were chosen for two purposes:
sin(le itis only 1-2% of the total com:))utation time and ree|$|irto teStSRT- on problems that cannot be efficiently solved by

) PRM and single-query planners and to evaluate the performance
complex search structures. Each $g{ induces a subgraph ¢ yq narallesRT compared to the sequential implementation.
Lp, = (Tp,, Ep,) of Gc referred to as the local graph. Sincgy, s way, we hope to gain insight on the difficult and lasgel
each milestone oLp, is owned by and stored locally ift;, nq5ved problem of sampling schemes for motion planning.
computation of the edges dfp, requires no communication. | st pe noted that the authors made an effort to choose
. 3) Edge ComputationThe edge computation is describe ifficult benchmarks and representative problems given the
in Table Il under @MPUTE EDGES. Fof e&,l,Ch Processar:, jimited amount of space that can be devoted to experimental
the scheduler selects an edge = (7", 7") uniformly at setup. This task is particularly difficult due to the absente
random fromLp,, deletese; from G and Lp,, and assigns benchmark sets for path planning.
the computation ok; to P;. The scheduler sends tB; the
indices of the two milestone$” and T”. In response,p;
runs the tree-connection algorithm @H and 7" and if the A. Benchmarks
connection is successful, it sends to the scheduler thedadi We ran our experiments on a set of benchmarks chosen to
of two configurationg’ € T’ andq” € T” that are connected vary in type and in difficulty. An illustration of our benchmka
by a local path. In that case, the scheduler agddse G and can be found in Fig. 1 and Fig. 2.
all edges(T;,7;) € G¢ such thatT; andTj lie in the same  Problem “narrow4h2” consists of four non-convex parts
connected component afr are deleted fromG as they (robots) that must wiggle their way through two small holss a
will not change the connected component structurezef they exchange places from one side of a wall (obstacle) to the
The above steps are repeated until there are no more edgestlirer side of a second wall (obstacle), as shown in Fig. 1s Thi
G¢. At each step, certail p,'s may be empty due to edgebenchmark tests howRT handles narrow-passage problems,
deletions and cause some of the processors,f3ay.., P, which are known to be difficult foRRT, EST, and PRM.
to become idle. Our implementation handles this situatign b Problems “narrow6” and “narrow8” are similar to “nar-
repartitioning the milestones owned by these processors. row4h2”, except they have six and eight non-convex parts
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TABLE IlI
PARALLEL SAMPLING-BASEDROADMAP OF TREES(SRT) ALGORITHM.

Scheduler ProcessorP;

1: INVOKE COMPUTEMILESTONES 1: INVOKE COMPUTEMILESTONES

PARALLEL SRT

2: INVOKE COMPUTE EDGES 2: INVOKE COMPUTEEDGES

1. Q«—0,i0. 1. Tp, — 0.

2: while ¢ < K do MCI:I?E%:'LOJT\IEES 2: Post request for message from scheduler.
3:  Wait for somegr to arrive. 3: while fi ni sh has not been receiveib

4 Q<—QU{gr}; i—i+1l 4. T « generate a milestoneTp, < Tp, U {T}.

5: Broadcasft i ni sh to processors. 5:  Send representativgr to the scheduler.

1. Ge = (Vr, Ec) < graph of candidate edges. COMPUTE 1: Post request for message from scheduler.

2. Lp, = (Vi, Es) < local graph, for allp;. EDGES 2: while fi ni sh has not been receivedb

3 W={P,...,P.}. 3:  while no message has been received

4: while unprocessed edges remaindif: do 4: Complete a pending send operation.

5. INVOKE COMPUTE PARTITIONS. 5: Complete a pending receive operation.

6. for i: P, € W and |E;| > 0 do 6: if partition message has been receitiedn

7: e; «— randomly selected fronk’;; sende; to P; 7: INVOKE COMPUTE PARTITIONS.

8: E, — E; —{e;}; W—W —{P}. 8. if e; = (v1,v2) has been receivedhen

9: if computed edges have arrivifien 9: Complete pending receives (if any) @, , Tv.,.

10: W — W U{P; : P, computede;}. 10: Try to connectT,, andT,,.

11: Update connected componentsc and Lp,’s. 11: Send result to scheduler.

12: Broadcasf i ni sh to processors. 12:  Post request for message from scheduler.
1. S={P : E =0} COMPUTE 1: Complete all pending send/receive operations.
2: ComputeGe = (Vs, Es), whereVs = Upcs Vp PARTITIONS 2: Receives from server.

3: andEs = {(vi,v2) € E : v1,v2 € Vs}. 3: for ¢t =1to K do

4: PartitionGy, into Lp,'s for P, € S. 4: if T; € Tp, and P; # o (i) then

5: for i: P, € S do 5: Post request to serifl; to o (7).

6: o(v) — P forallve Vp,. 6: if T; ¢Tp, and P; = o(i) then

7: Sendo to P; for all P; € S. 7: Post request to receivg; from o (7).

(robots), respectively, and a single wall (obstacle) wismall through a long and narrow tunnel (obstacle), as shown in
square hole in it. These benchmarks test how efficientlyanotiFig. 2(d). This benchmark combines the “fence” and “tunnel”
planners solve high-dimensional narrow-passage problemsbenchmarks in order to test the efficiency SHT in solving
Problem “pentomino” [2] consists of twelve pieces (robotg)roblems which are known to be difficult f®@RM, RRT, and
filling a 3 x 4 x 5 box, as shown in Fig. 2(a). The objective i£ST. The holes in the fence have different dimensions to
to disassemble the initial configuration by moving each @iedurther highlight the opportunistic nature BRT andEST and
an arbitrary distance away from all the other pieces. Thiscrease their likelihood of failure by making some of the
benchmark tests the efficiency of motion planners in solvirples so small that the robot cannot wiggle its way through.
high-dimensional problems in uncluttered environments.  The tunnel is also narrow, barely allowing the robot to move
Problems “tunnell” and “tunnel2” consist of one and twehrough it, making it difficult forPRM with uniform sampling
non-convex parts (robots), respectively, that must goutpnce  to generate many configurations inside the tunnel.
long and narrow tunnel (obstacle), as shown in Fig. 2(b)séhe Problem “rooms1” consists of four rooms formin@2ax 2
benchmarks further test how efficiently motion plannerseol grid, as shown in Fig. 2(e). Every pair of rooms is separated
narrow-passage problems. by fences (obstacles), except the first and the fourth ones,
Problems “fencel”, “fence2”, and “fence4” consist of onewhich are separated by a wall (obstacle). The objective is to
two, and four non-convex parts (robots), respectivelyc@th move one non-convex part (robot) from the first room to the
in a box split by a regular fence-like wall (obstacle), asveho fourth room. Problem “rooms2” is similar except it has two
in Fig. 2(c). Each robot must go from one side of the fenaebots. As the “fence” benchmarks, the “rooms” benchmarks
to the opposite side. These benchmarks test how efficientiyther test the efficiency o$RT in solving problems which
SRT solves problems which its building blocks cannot solvigs building blocks cannot solve easily.
efficiently. Using benchmarks with different number of rebo  Problems “random4” and “random-chain” consist of four
also tests the efficiency of the motion planner as the numbem-convex parts (robots) and E-DOFs articulated arm
of DOFs increases. (robot), respectively, in a box filled with random polyhedra
Problem “combol” consists of a single non-convex padbjects (obstacles), as shown in Fig. 2(f). These benclsnark
(robot) that must go through a fence (obstacle) and thé&st how efficient motion planners are in solving problentsiwi
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(a) “pentomino” (b) “tunnel2” (c) “fence2” (d) “combol”

(e) “rooms2” (f) “random4” (g) “puma-bars”

Fig. 2. Path planning problems.

cluttered environments and a high number of collision ckecklOOMbps for the processing nodes with a 1Gbps backbone
Problem “puma-bars” consists of a 6R articulated limio the scheduler node. All of the nodes aabi an Li nux

(robot) similar to a Puma560 surrounded by several verticalth kernel 2.4.21.

bars (obstacles), as shown in Fig. 2(g). The movements of the

puma robot are severely constrained making it difficult tveso D. Sampling Methods

any queries. This benchmark tests how ve&iT' distributes its | our experiments, we used sampling-based motion plan-

computation for problems that require long computatiore8m ers. There is extensive research on how sampling should be

done, especially in the context 8RM. In the original formu-
B. Motion Planning for Multiple Robots lation of PRM [32], uniform random sampling is employed. In

In our experiments, we considered multiple non-convel€centyears, other sampling methods have been develoged th

rigid bodies and multiple open kinematic chains operatimg pltempt to improve the performance of the motion planners
a three dimensional workspace with rigid, non-convex staticl [12]: [13], [21], [23], [24], [27], [55], especially inthe
obstacles. As with other motion planners, generalizations PreéSence of narrow passages. We expect that any sampling
many other kinematic planning problems are straightfodnvafMethod that improveBRY, RRT, or EST, would also improve

and the use oRRTs andESTs as subroutines gives a naturaPRl SINCEPRM, RRT, andEST are the building blocks GSRT.

way to extendSRT to kinodynamic planning instances [18]FUTthermoresRT retains the global sampling property Rk

[25], [40]. We applied several optimizations to the mutibot and uses it to offer t®’RT and EST more opportunities to

case for rigid bodies and open kinematic chains that ineblvEXPlore different parts of the configuration space.
heuristic replanning of robots in collision [1], [9]. A comprehensive testing with all available sampling meth-
ods is just not possible, given the space restrictions o thi

paper. In our experiments, we compare the performance of

C. Hardware and Software Setup SRT to PRM, RRT, andEST using several sampling methods. The

The implementation was carried out ANSI C/ C++ us- results of our experiments indicate that any sampling nuktho
ing the GNU compilers and libraries. Additionally, we madethat improves the performance of the building blocksaf,
use of the SW FT++ collision detection library [19], the also improves the performance of the ovesaT.
MPI CH MPI for communication andOpenG. for visual- In addition to the uniform random sampling [32], we
ization. The processing nodes consisted of eleven dAiv8l present experiments where gaussian [12], bridge [27],&nd t
At hl on 1900MPs with one gigabyte of memory each. Thevariants of obstacle-based [3] sampling, denoted obstacid
scheduler node was aAVD At hl on 1800XP with 500 obstacle2, are used. A summarized description of many of
megabytes of memory. The network topology was switchaldese methods can be found in [12].
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TABLE IV

the “fence” and “narrow” benchmarks. We s&t = 1000,
PARAMETER SETTING FORSRT.

m = 50, andn; = 70.
| K m Ne ne np n The “tunnel2” benchmark is harder because it has two
ggg 7450(?'155& 5)15'1580 172135 ‘é‘_% 12%23% i50'_3;% robots instead of one, and thus, considered betvea¢hand

cat3 | 1500-2000 100-150 15-18 8-10 50-60 100-125 Cat3 categories. A similar classification holds for “roomsl”,

“rooms2”, and “combol” benchmarks since the openings in
the fences and the tunnels are slightly larger than thoseein t
_ “fence” and “narrow” benchmarks. For these benchmarks, we
E. Parameter Setting setK = 1600, m = 50, andn; = 70.

Through extensive experimentation on many different 2) PRM parameters:The performance afRM is determined
benchmarks, we have found three different categories lf two parameters and n.. For the “fencel”, “fence2”,
parameter values that yield good performance $ar on “narrow4h2” benchmarks, we séf = 150000 andn. = 125.
catl, cat2andcat3benchmarks, as indicated in Table IV. Thd-or the “tunnell” benchmark with uniform sampling, we set
performance offRT on these categories depends more on thi¢ = 50000 andn, = 75, and for the non-uniform sampling
number of milestonesk’, and the number of configurationscases, we sek = 35000 andn. = 75. For the benchmarks
per milestone,m, than it does on the values of the othemn Table V(c), we setX = 60000 and n. = 100. For the
parameters. That is, for the parameters n,, n, and n;, other benchmarks of Table V, we could not find parameters
the values in thecat3 category can be used to solve théhat would solve the problem in less tharhours.
problems in theatl andcat2 categories with only a negligible  3) RRT and EST parameters:RRT andEST iterate over the
increase in the running time 8RT (see Section II-F for connection strategy until the two trees are connected or a
a summary ofSRT parameters). There is clearly a tradeofpredefined number of iterations has been reached. For this
betweenK andm. The largerm is, the easier it is for tree- reason, we set; = 500000 to allow RRT andEST to iterate
connections to succeed. On the other hand, generating masymuch as it was needed to find a solution.
configurations per milestone requires computation time tha
could be more useful if spent in tree-connections. Sigge F. Comparison oRT with Other Planners
provides a smooth spectrum betweekM and RRT or EST, SRT can be made int®RM, RRT, or EST by setting its
larger values for< and smaller values for. makeSRT behave parameters as in Table Il. We tested the performance of all
more like PRM and less likeRRT or EST, and vice-versa. Our these motion planners on the benchmarks of section IV-A.
experiments indicate th&RT should use more milestones andrable V contains a summary of our results. In each case, we
a smaller number of configurations per milestone for prollemeport the running time in seconds, averaged over sixtegs ru
which PRM is better suited and fewer milestones and a largerin Table V(a), we compare the performancesafl to other
number of configurations per milestone for problems whighlanners when uniform sampling is used. Our experiments
RRT or EST are the better choice. showed tha®PRM, RRT, or EST could not solve the “fence2”,

The results of our experiments are for good parametgrarrow6”, or “narrow8” problems even aftérhours of com-
selections for each method. We ran each benchmark sevenadation, whileSRT solved these problems §67.6s,2935.2s,
times with an initial guess for the parameters. Then based and 7270.2s on average, respectively. For the benchmarks
the results of the experiments, we modified our guesses uffidncel”, “fence2”, “narrow4h2”, we observe a significant
the particular motion planner was able to solve the benckmaeduction in the running time &RT versusPRM, RRT, andEST.
consistently in as little time as possible. In a new exampl@he running time improvement is less significant in the case
selecting the optimal parameters can be difficult, paridyl of the “pentomino” benchmark due to the short time needed
for SRT, because of the number of the parameters and tteesolve this puzzle. As Table V(a) indicate®M with basic
relation between and m. In general, generating no moreuniform random sampling is generally slow since it requires
than several hundred milestones and using milestones watltonsiderable amount of time to preprocess the configaratio
several dozens of configurations seemed to be the besigsettgpace. Importantly, for the cost of two or three bi-direatib
For the experiments of Table V, we used the following valueBRT or EST queries,SRT can preprocess the configuration

1) SRT parameters:For all our experiments witl$RT, we space to obtain a structure that answers queries more hpbust
setn. = 15, n, = 8, andn, = 20. The values of the other and more quickly than the corresponding sampling-based tre
parameters varied. Our choices were guided by Table IV. planners. The differences between the methods were more

The “pentomino” benchmark is in theatl category, since pronounced in the examples with more complex scenes and
it has no obstacles; we sé&f = 400, m = 20, andn; = 30.  with more robots. We use fairly standard implementations of

The “fencel”, “fence2”, “fence4”, “narrow4h?2”, “narrow§” PRM, EST, andRRT. We think it is likely that improvements to
and “narrow8” benchmarks belong to tleat3 category be- either subroutine would be an improvementSRY.
cause of the very small dimensions of the openings making itin Table V(b, c), we compare the performanceSafT to
almost impossible for the robots to wiggle their way througlPRM, RRT, andEST using several sampling methods aimed at
In addition, many of these benchmarks have several robots. Fnproving the performance of the building blocks KT in
these benchmarks, we s€t= 2000, m = 100, andn; = 100. scenes with narrow passages. The purpose of these experi-

The “tunnell” benchmark fits into theat2 category since ments is to show that improvements in the sampling employed
the openings in the tunnel are slightly larger than those by PRV, RRT, or EST also improve the performance 8RT.
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TABLE V
COMPARING SRT TO PRM, RRT, AND EST.

benchmark PRM RRT EST SRT[RRT] SRT[EST]
fencel 5638.80s 7209.00s X 114.60s 351.00s
fence2 14007.00s X X 868.18s 872.78s
fence4 X X X 3307.40s 3158.51s
random4 X 6133.80s X 2242.39s 1577.97s
narrow4h2 14809.20s 9045.00s X 1666.95s 1290.25s
narrow6 X X X 3131.71s 2935.10s
narrow8 X X X 7270.20s 7525.80s
pentomino X 168.48s | 47.38s 58.29s 19.89s

(a) Summary of the results when uniform random sampling elus

sampling PRM RRT EST SRT[RRT] SRT[EST]

uni form 463.83s X X 89.35s 85.31s
gaussi an 409.22s X X 51.45s 77.41s

bri dge 377.86s X X 38.54s 84.27s
obstacl el 335.67s X X 38.84s 43.78s

obst acl e2 334.75s X X 44.27s 36.30s

(b) Summary of the results for the “tunnell” benchmark whewesal sampling methods are used.

benchmark PRM RRT EST SRT[RRT] SRT[EST]
tunnel2 2697.67s obstacl e2 X X 262.75s obstacle2 | 290.96s obstacl e2
roomsl 2391.54s obstacl e2 X X 193.00s obstacle2 | 149.17s obstacl e2
rooms2 4448.97s obstacl el X X 542.96s obstaclel | 406.77s obstacl el
combol 1136.12s obstacl el X X 136.59s obstacl el | 190.89s obstacl el

(c) Summary of the results for many benchmarks when sevarapkng methods are used.
Only the best average running time and the sampling methed tssobtain it are indicated.

Entries forRRT andEST show average time per query. Entries fRM, SRT[RRT] and SRT[EST] show average time to build
the roadmap and then solve ten random queries; average émgupry is not shown separately since it is less thdrs.
Entries marked withX show that the problem could not be solved even &téours of computation. Entries in bold show
the best running time across the row. Each running time isioetl as an average of sixteen runs.

Table V(b) contains the results of our experiments for theurthermore, as our experiments indicate, improvemeriteto
“tunnell” benchmarkRRT and EST were not able to solve sampling done byPRM carry over toSRT. As an example,
the queries even aftef hours of computation. We believethe average running time SRT[RRT] is reduced fron89.35s
this is due to the small dimensions of the tunnel that barely 38.84s and the running time cfRT[EST] is reduced from
allow the robot to move making it hard f&RT and EST 85.31s to 36.30s when uniform and obstacle-based sampling
to connect queries on the opposite sides of the tunnel. Swarle used, respectively. Similar results were obtained floero
connections requirBRT and EST to first gear the exploration benchmarks, as summarized in Table V(c).
from query configurations towards the openings of the tunnelin Table V(c), we summarize the results of our experi-
and then progress inside the tunnel. This is difficult sinte ments for the “tunnel2”, “rooms1”, “rooms2”, and “combol”
their opportunistic approach@8T andEST spend most of the benchmarks. In addition to the average running time, we also
time trying to connect configurations on the opposite sidésdicate the sampling method, i.e., uniform, gaussiardda;
of the dividing wall, which does not have any openings. Onbstaclel, or obstacle2, that was most effective. Simildhé
the other handPRM is able to solve this problem even wherperformance on the “tunnell” benchmakRT andEST did not
uniform sampling is used due to the large number of samplesive any of the benchmarks in less thiahours despite the
it generates making it possible to connect some configuraticcampling method used. The performancekif was improved
inside the tunnel. The large number of samples needed, hdw-the non-uniform sampling methods, and as in the “tunnell”
ever, takes its toll on the running time BEM. The performance benchmark, the improvements were more significant when the
of PRM can be improved by using different sampling methodshstacle-based sampling methods were used. As indicated in
especially obstacle-based methods. As shown in Table V(ibable V(c), these improvements carried ovelSRT reducing
the average running time dfRM is reduced from463.83s its running time to a fraction of the running time PRM.
to 334.75s when uniform and obstacle-based sampling are
used, respectivelysRT, which retains the global sampling
property ofPRY, is able to offer toRRT and EST easier tree i N
connections which could have some of their configurations!t I8 Well known thatPRM, RRT and EST are sensitive to
inside the tunnel or near the openings of the tunnel. In tHiae interplay between the distance metric and the increshent

way, SRT is able to perform better thaPRM, RRT, andEST. Planner [4], [39]. We also made this observation in our
experiments. In environments with thin features, in patic

G. Discussion and Insights on Sampling Methods
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the “fence”, “rooms”, and “combo” environmentsRT and -

EST tended to produce many configurations that were stuck & /
near the obstacles. As ba®RT andEST are opportunistic, it is [~ ldeal Speedup_—=7 o
difficult for these methods to abandon the current regiomef t ;fu Aeedup
configuration space and explore other regions that migldt lea (}’{Z

to successful connections. As part KT, RRT andEST may E

still get stuck on particular regions when connecting tvees. "

However, these connections run only for few iterations and S S S S ———
immediately afterRRT and EST explore new regions as they Number of Processors

try to connect other trees. ThusRT allows RRT and EST to
quickly explore many different regions significantly impnog
the likelihood for successful connections. In environrserith

Fig. 3. Speedup of parall&éRT for the “fence2” benchmark witRRT as the
local planner ofSRT. Similar speedups are obtained for the other benchmarks.

a single narrow featur&RT andEST are forced to do a similar - . :
amount of work to answer a single query to the preprocessing - Idle: 2.38%
phases oPRM or SRT. This phenomena also accounts for the -

better performance dfRT on the random example compared w. Milestone ~ |Edge

to other examples where solving a query can often be done j:::f&'a‘sﬂztam": gg’;‘ﬁ}:wmm
without considering the whole configuration space. Finaly

believe that the efficiency &RT derives in part from offering Partitioning: 2.03%
the tree-based planners easier queries as they come from the —— i
nearest neighbor clustering and also from the fact Hrat Y ecoras

and EST make use of locality and are capable of answering
easier queries while avoiding difficult and irrelevant paof Fig. 4.  Distribution of computation of parall$RT for the “fenced”
the configuration space. b(_anc_:hma_rk yvith_RRT as the Iocal_planner cﬂR_T running on22 processors.
Our planner has several opportunities for early exit. I%lmllar distributions of computation are obtained for ttihes benchmarks.
collision detection, bisection checking on a path allows fo
early exit f_or paths with many poII|S|ons. In tHeERM Ia_lyer, H. Measuring Parallel Efficiency
only checking edges between different components improved
the running time. Also, the tree-based planners can make a0 measure the parallel efficiency &RT, we ran on
early exit by quickly checking:, close pairs for connection various benchmarks the parallel code with 1, 2, 4, 8, 16
with a straight-line planner before running bi-directibRRT and 22 processors - the maximum number of processors we
or EST. SinceSRT uses all of these exit opportunities, the timéad available. Run times are averaged over sixteen runs. In
improvements are most significant. Table VI, we report results foBRT with RRT and EST as
In some of our experiments, the running timesafr was far its local planners. In each case, we report time with 1 and
superior toPRM. This occurs for several reasorsRT checks 22 processors (time[1] and time[22]). Also, for the paialle
fewer edges but works harder for each edge. Also, the nearésts, we report the percentage of time spent in milestone
neighbor queries lead to super-linear growth in the runnig@mputation (mc), edge computation, (ec), communication
time. On more difficult example®RM needs many milestones(comm), waiting (idle), and parallel efficiency (eff), whids
to succeed and théd-tree has many points in it. As thecalculated byts/(t; - N), wheret, is sequential timet,, is
number of points in the tree grows, this cost begins to dotaingarallel time, andV is the number of processors.
the running time since it is the only super-linear cost in the The plot in Fig. 3 is for “fence2” and indicates the speedup
implementation. The hierarchical representatiois®T yields obtained for different numbers of processors. The plot in
much smaller trees and this problem does not manifest Fig. 4 is for “fence4” and presents logged data showing how
seriously. processors spend their time. These plots are charadteoisti
Our experiments confirmed an observation that has beiéae behavior of the algorithm on the other benchmarks as well
made earlier abouPRM. Uniform random sampling is very The overall efficiency of the paralle$RT is reasonably
easy to implement and in many cases the simplest way high on average88.8%, and in all our experiments in the
solve a path planning problem, but it is not always the mosinge67 —99%. We also had a benchmark where superlinear,
efficient. Our experiments also indicate that improveménts 1.12%, speedup was obtained. The speedup graph in Fig. 3 is
the sampling methods used BgM, RRT, or EST improve the almost linear which suggests that the efficiency constambis
performance oRT. By exploiting efficient sampling schemesdecaying with the number of processors. However, the rall
such aseST and RRT, a planner with better performance isSRT places a load on the scheduler which is proportional to the
obtained. Other combinations of sampling methods can bamber of processors. As the number of processors increases
used, but a comprehensive testing of all combinations is rtbis will eventually become a problem. A possible solution
possible due to time and space limitations. might be to increase the number of schedulers or to have a
We also note that in the reported experimegts; and hierarchy of schedulers. This is left as future work [50].
gsoal Were not used as milestone roots during the roadmapNevertheless, there are several advantages of the parallel
construction to make the problem even more difficult$ar. SRT. It is fairly simple and makes little use of any blocking
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TABLE VI
PARALLEL SRT VERSUSSEQUENTIAL SRT.

time[1] time[22] mc ec comm idle eff

benchmark a b a b a b a b a b a b a b

fence2 868.18 872.78| 42.82 41.54| 41.08 27.76| 4539 63.11| 9.65 6.57| 3.88 256| 0.92 0.95
fence4 3307.40 3158.51 151.84 149.23| 40.08 23.65| 55.51 70.40| 2.03 4.49| 2.38 3.41| 099 0.96
narrow4h2 1666.95 1290.25) 93.21 79.51| 39.02 27.15| 50.28 58.13| 6.18 9.36| 452 536| 0.81 0.74
narrow6é 3131.71 2935.10| 173.41 176.15| 45.00 26.05| 45.09 65.33| 6.92 583|299 279|082 0.76
random4 2242.39 1577.97| 125.56 107.83| 30.36 13.17| 64.12 78.97| 3.91 4.88| 1.61 298| 0.81 0.67
random-chain| 10050.48 10691.09 512.28 551.93| 23.30 21.86| 72.19 74.29| 221 155| 230 230| 0.89 0.88
puma-bars 8097.04 10207.89 327.32 414.10| 2.48 2.06| 87.60 89.39| 844 7.64| 148 091| 112 1.12

Columns (a) and (b) refer to data f6RT[RRT] and SRT[EST], respectively. Columns (time[1]) and (time[22]) show thmming time in seconds
of the sequentiaSRT and the paralleBRT with 22 processors, respectively. Columns (mc), (ec), fopnand (idle) show the percentage of the
running time of the paralle$RT spent in milestone computation, edge computation, comeation, and idle, respectively. Column (eff) shows
the efficiency of the paralle$RT.

communication. Milestone and edge computations are alsoFurthermore, we suggested a parallel implementation of
nearly fully distributed and storage is also distributeérdy. SRT and obtained an efficient division of labor allowiisgT
Virtually all of the communication overhead occurs duringo tackle problems of unprecedented complexity. We plan to
the edge computations. This stage would be the most reasseale ouiSRT implementation to a cluster with several hundred
able place to attempt to make further improvements. Thelgrapodes. To do this, it is likely that some decentralizationhef
partition scheme we used in our implementation optimized tlscheduling computations will become necessary [50]. Oal go
sum of the number of edges in thegp,'s. A better quantity is to apply our work to increasingly hard planning problems
to optimize would be to maximize the minimum number oflealing with flexible robots [35], [37], [45], reconfigurabl
edges over alL p,'s. This would favor better load balancing.robots [56], manipulation planning [51], complex planning

V. DISCUSSION instances [52], and computational biology applicatiods[[@.

We observed in our experiments thskT is a powerful
planner which combines advantages of traditional sampling

based single query and multiple query planners. By varyin
Inge query UTR'e query p y v wgg mbers of the Physical and Biological Computing group at

SRT's parameters, a smooth spectrum between single un, Uni ity for their heloful 4 di X
planners andRM can be obtained from our implementation, ce University for their helpful comments and discussions
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